Han Mei, Liu Wenjing, Li Jia, Meng Lingning, Zhang Yan, Zhang Zhifeng, Wang Danwei, Gao Zixin, Zhou Wanqing, Liu Chang
Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing, China.
College of Life Sciences, Nanjing Normal University, Nanjing, China.
J Glob Antimicrob Resist. 2025 Mar;41:15-19. doi: 10.1016/j.jgar.2024.12.007. Epub 2024 Dec 16.
The emergence of multidrug-resistant (MDR) Escherichia coli strains has significantly constrained antibiotic treatment options, while the spread of antimicrobial resistance genes (ARGs) and mobile genetic elements exacerbates the situation. This study delves into an MDR E. coli strain, QMM-01, which uniquely co-expresses β-lactamases from all four recognized classes, aiming to uncover the underlying mechanisms of its resistance and assess its potential for global spread.
E. coli QMM-01, isolated from a burn patient, underwent antibiotic susceptibility testing through standard automated procedures commonly employed in clinical settings, with further test by immunochromatographic tests for carbapenemases. For genomic insights, whole-genome sequencing (WGS) was performed using both PacBio Sequel and Illumina NovaSeq platforms, supplemented by bioinformatics analyses to predict antimicrobial resistance genes, determining serotypes, performing multilocus sequence typing, and conducting comparative genomic analysis.
QMM-01 exhibited resistance to a broad spectrum of β-lactam antibiotics, including carbapenems and ceftazidime-avibactam, with aztreonam being the sole exception. The resistance profile of the strain might primarily be due to the production of class B metallo-β-lactamases. WGS revealed the presence of a chimeric plasmid, pQMM-2-NDM-5, carrying the blaNDM-5 gene and exhibiting similarities with plasmids from diverse geographical regions. This plasmid contains 161 predicted coding sequences and harbors resistance genes for 13 different antibiotics, forming a resistance island with a complex genetic environment.
This study underscores the global challenge posed by antibiotic resistance and emphasizes the need for international collaboration in antibiotic stewardship to mitigate the spread of resistance genes.
多重耐药(MDR)大肠杆菌菌株的出现显著限制了抗生素治疗选择,而抗菌耐药基因(ARGs)和可移动遗传元件的传播使情况更加恶化。本研究深入探究了一株多重耐药大肠杆菌菌株QMM-01,该菌株独特地共表达了所有四种公认类型的β-内酰胺酶,旨在揭示其耐药的潜在机制并评估其全球传播的可能性。
从一名烧伤患者身上分离出的大肠杆菌QMM-01,通过临床环境中常用的标准自动化程序进行抗生素敏感性测试,并通过免疫色谱法检测碳青霉烯酶进行进一步测试。为了获得基因组见解,使用PacBio Sequel和Illumina NovaSeq平台进行全基因组测序(WGS),并辅以生物信息学分析来预测抗菌耐药基因、确定血清型、进行多位点序列分型以及进行比较基因组分析。
QMM-01对包括碳青霉烯类和头孢他啶-阿维巴坦在内的多种β-内酰胺抗生素表现出耐药性,氨曲南是唯一的例外。该菌株的耐药谱可能主要归因于B类金属β-内酰胺酶的产生。全基因组测序揭示了一个嵌合质粒pQMM-2-NDM-5的存在,该质粒携带blaNDM-5基因,并且与来自不同地理区域的质粒具有相似性。该质粒包含161个预测的编码序列,并含有对13种不同抗生素的耐药基因,形成了一个具有复杂遗传环境的耐药岛。
本研究强调了抗生素耐药性带来的全球挑战,并强调了在抗生素管理方面进行国际合作以减轻耐药基因传播的必要性。