Suppr超能文献

用于固态核钟的钍氟化物薄膜。

ThF thin films for solid-state nuclear clocks.

作者信息

Zhang Chuankun, von der Wense Lars, Doyle Jack F, Higgins Jacob S, Ooi Tian, Friebel Hans U, Ye Jun, Elwell R, Terhune J E S, Morgan H W T, Alexandrova A N, Tran Tan H B, Derevianko Andrei, Hudson Eric R

机构信息

JILA, NIST and University of Colorado, Department of Physics, University of Colorado, Boulder, CO, USA.

Johannes Gutenberg-Universität Mainz, Institut für Physik, Mainz, Germany.

出版信息

Nature. 2024 Dec;636(8043):603-608. doi: 10.1038/s41586-024-08256-5. Epub 2024 Dec 18.

Abstract

After nearly 50 years of searching, the vacuum ultraviolet Th nuclear isomeric transition has recently been directly laser excited and measured with high spectroscopic precision. Nuclear clocks based on this transition are expected to be more robust than and may outperform current optical atomic clocks. These clocks also promise sensitive tests for new physics beyond the standard model. In light of these important advances and applications, a substantial increase in the need for Th spectroscopy targets in several platforms is anticipated. However, the growth and handling of high-concentration Th-doped crystals used in previous measurements are challenging because of the scarcity and radioactivity of the Th material. Here we demonstrate a potentially scalable solution to these problems by performing laser excitation of the nuclear transition in ThF thin films grown using a physical vapour deposition process, consuming only micrograms of Th material. The ThF thin films are intrinsically compatible with photonics platforms and nanofabrication tools for integration with laser sources and detectors, paving the way for an integrated and field-deployable solid-state nuclear clock with radioactivity up to three orders of magnitude smaller than typical Th-doped crystals. The high nuclear emitter density in ThF also potentially enables quantum optics studies in a new regime. Finally, we present the estimation of the performance of a nuclear clock based on a defect-free ThF crystal.

摘要

经过近50年的探索,真空紫外钍核同质异能跃迁最近已被直接激光激发,并以高光谱精度进行了测量。基于这种跃迁的核时钟预计比目前的光学原子钟更稳定,并且可能性能更优。这些时钟还有望对标准模型之外的新物理进行灵敏测试。鉴于这些重要进展和应用,预计多个平台对钍光谱目标的需求将大幅增加。然而,由于钍材料的稀缺性和放射性,以往测量中使用的高浓度掺钍晶体的生长和处理具有挑战性。在此,我们通过对采用物理气相沉积工艺生长的ThF薄膜中的核跃迁进行激光激发,展示了一种可能可扩展的解决这些问题的方案,该过程仅消耗微克级的钍材料。ThF薄膜本质上与光子学平台以及用于与激光源和探测器集成的纳米制造工具兼容,为集成式且可现场部署的固态核时钟铺平了道路,其放射性比典型的掺钍晶体小三个数量级。ThF中高核发射体密度还可能使新领域的量子光学研究成为可能。最后,我们给出了基于无缺陷ThF晶体的核时钟性能估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验