Stollenwerk Tobias, Huckfeldt Pia Carlotta, Ulumuddin Nisa Zakia Zahra, Schneider Malik, Xie Zhuocheng, Korte-Kerzel Sandra
Institute of Physical Metallurgy and Materials Physics, RWTH Aachen University, 52056, Aachen, Germany.
Adv Mater. 2025 Feb;37(6):e2414376. doi: 10.1002/adma.202414376. Epub 2024 Dec 18.
Intermetallics, which encompass a wide range of compounds, often exhibit similar or closely related crystal structures, resulting in various intermetallic systems with structurally derivative phases. This study examines the hypothesis that deformation behavior can be transferred from fundamental building blocks to structurally related phases using the binary samarium-cobalt system. SmCo and SmCo are investigated as fundamental building blocks and compared them to the structurally related SmCo and SmCo phases. Nanoindentation and micropillar compression tests are performed to characterize the primary slip systems, complemented by generalized stacking fault energy (GSFE) calculations via atomic-scale modeling. The results show that while elastic properties of the structurally complex phases follow a rule of mixtures, their plastic deformation mechanisms are more intricate, influenced by the stacking and bonding nature within the crystal's building blocks. These findings underscore the importance of local bonding environments in predicting the mechanical behavior of structurally related intermetallics, providing crucial insights for the development of high-performance intermetallic materials.
金属间化合物包含多种化合物,通常呈现相似或密切相关的晶体结构,从而形成具有结构衍生相的各种金属间化合物体系。本研究检验了这样一个假设,即使用二元钐 - 钴体系,变形行为可以从基本结构单元转移到结构相关的相。将SmCo和SmCo作为基本结构单元进行研究,并将它们与结构相关的SmCo和SmCo相进行比较。进行纳米压痕和微柱压缩试验以表征主要滑移系,并通过原子尺度建模进行广义层错能(GSFE)计算作为补充。结果表明,虽然结构复杂相的弹性性能遵循混合法则,但其塑性变形机制更为复杂,受到晶体结构单元内的堆积和键合性质的影响。这些发现强调了局部键合环境在预测结构相关金属间化合物力学行为方面的重要性,为高性能金属间化合物材料的开发提供了关键见解。