Suppr超能文献

在环境条件下电化学合成纳米结构有序金属间化合物。

Electrochemical Synthesis of Nanostructured Ordered Intermetallic Materials under Ambient Conditions.

机构信息

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.

出版信息

Acc Chem Res. 2023 Jun 20;56(12):1373-1383. doi: 10.1021/acs.accounts.2c00856. Epub 2023 Jun 8.

Abstract

ConspectusThe enhanced catalytic properties of alloy nanostructures have made them a focus of extensive research in the field of catalysis. Alloy nanostructures can be classified into two types: disordered alloys (also known as solid solutions) and ordered intermetallics. The latter are of particular interest as they possess long-range atomic scale ordering, which leads to well-defined active sites that can be used to accurately assess structure-property relationships and their impact on (electro)catalytic performance.While many ordered intermetallics (OICs) have been synthesized and evaluated as electrocatalysts, there is still a lack of understanding on how the local structure of atoms controls their catalytic performance. Ordered intermetallics are difficult to synthesize and often require high-temperature annealing for the atoms to equilibrate into ordered structures. High temperature processing results in aggregated structures (usually >30 nm) and/or contamination from the support, which can decrease their performance and preclude these materials from being used as model systems for elucidating insight into structure and electrochemical properties. Therefore, alternative methods are required to enable more efficient atomic ordering while maintaining some level of morphological control.This Account delves into the potential of electrochemical methods as a practical alternative for synthesizing ordered intermetallics at lower temperatures. Specifically, it explores the viability of electrochemical dealloying and electrochemical deposition to synthesize Pd-Bi and Cu-Zn intermetallics at room temperature and atmospheric pressure. These methods have proven useful in synthesizing phases that are typically inaccessible under ambient conditions. The high homologous temperatures at which these materials are synthesized provide the necessary atomic mobility required for equilibration and formation of ordered phases, thus making the direct synthesis of ordered intermetallic materials at room temperature by electrochemical means a reality.Beyond synthesis, the electrocatalytic performance of these intermetallics was assessed for the oxygen reduction reaction (ORR), which is an important process employed in fuel cells. The OICs displayed increased performance with respect to commercial Pd/C and Pt/C benchmarks because of lower coverages of spectator species. Furthermore, these materials exhibited improved methanol tolerance.This Account provides valuable insights into the electrochemical synthesis of ordered intermetallics and their potential use as highly effective catalysts for electrocatalytic reactions. By using electrochemical methods, it is possible to obtain ordered intermetallics with unique atomic arrangements and tailored properties, which can be optimized for specific catalytic applications. With further research, electrochemical synthesis methods may enable the development of new and improved ordered intermetallics with even higher catalytic activity and selectivity, making them ideal candidates for use in a wide range of industrial processes. Furthermore, the ability to access intermetallics under milder conditions may accelerate the ability to use these materials as model systems for revealing fundamental insight into electrocatalyst structure and function.

摘要

概要

合金纳米结构的增强催化性能使其成为催化领域广泛研究的焦点。合金纳米结构可分为两类:无序合金(也称为固溶体)和有序金属间化合物。后者特别有趣,因为它们具有长程原子尺度的有序性,从而形成明确的活性位,可用于准确评估结构-性能关系及其对(电)催化性能的影响。

虽然已经合成并评估了许多有序金属间化合物(OICs)作为电催化剂,但对于原子的局部结构如何控制其催化性能仍缺乏了解。有序金属间化合物难以合成,通常需要高温退火以使原子平衡到有序结构中。高温处理会导致聚集结构(通常 >30nm)和/或载体污染,从而降低其性能,并使这些材料无法用作阐明结构和电化学性质的见解的模型体系。因此,需要替代方法来实现更高效的原子有序化,同时保持一定程度的形态控制。

本账户探讨了电化学方法作为在较低温度下合成有序金属间化合物的实用替代方法的潜力。具体来说,它探讨了电化学脱合金和电化学沉积在室温常压下合成 Pd-Bi 和 Cu-Zn 金属间化合物的可行性。这些方法已被证明可用于合成通常在环境条件下无法获得的相。这些材料在合成时具有较高的同系温度,这为平衡和形成有序相提供了所需的原子迁移率,从而使通过电化学手段直接在室温下合成有序金属间化合物成为现实。

除了合成之外,还评估了这些金属间化合物在氧还原反应(ORR)中的电催化性能,ORR 是燃料电池中采用的重要过程。由于 spectator 物种的覆盖率较低,OICs 的性能相对于商业 Pd/C 和 Pt/C 基准有所提高。此外,这些材料表现出对甲醇的耐受性提高。

本账户提供了有关有序金属间化合物电化学合成及其作为电催化反应高效催化剂潜在用途的有价值的见解。通过使用电化学方法,可以获得具有独特原子排列和定制性质的有序金属间化合物,这些化合物可以针对特定的催化应用进行优化。随着进一步的研究,电化学合成方法可能会开发出具有更高催化活性和选择性的新型改进有序金属间化合物,使它们成为广泛工业过程的理想候选材料。此外,在较温和的条件下获得金属间化合物的能力可能会加速将这些材料用作揭示电催化剂结构和功能基本见解的模型体系的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验