Fang Feihu, Wang Runqiu, Shao Dongfang, Wang Yi, Tao Yilü, Lin Shengshou, Ma Yufei, Liang Jinxing
Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.
National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150001, China.
Photoacoustics. 2024 Nov 26;41:100672. doi: 10.1016/j.pacs.2024.100672. eCollection 2025 Feb.
The quartz tuning fork (QTF) being the acoustic-electrical conversion element for quartz-enhanced photoacoustic spectroscopy (QEPAS) system directly affects the detection sensitivity. However, the low electromechanical conversion efficiency characteristic of standard QTF limits the further enhancement of the system. Therefore, the optimized design for QTF is becoming an important approach to improve the performance of QEPAS. In this work, 9 kHz T-shaped QTFs with isosceles-trapezoidal grooves are firstly applied to gas sensing experiments. Four types of 9 kHz QTFs are fabricated and applied to gas detection experiments. Simulation results reveal QTFs with isosceles-trapezoidal grooves are conducive to optimizing the stress distribution and enhancing electromechanical conversion efficiency. The results of the gas sensing experiment (acetylene CH) indicate that the signal peak and signal-to-noise ratio values of T-shaped QTF with positive isosceles-trapezoidal grooves can reach 1.44 and 1.85 times greater than the normal QTF with rectangular cross-section prongs.
石英音叉(QTF)作为石英增强光声光谱(QEPAS)系统的声电转换元件,直接影响检测灵敏度。然而,标准QTF的机电转换效率低的特性限制了该系统的进一步提升。因此,对QTF进行优化设计正成为提高QEPAS性能的重要途径。在这项工作中,首次将具有等腰梯形凹槽的9kHz T形QTF应用于气体传感实验。制作了四种类型的9kHz QTF并应用于气体检测实验。仿真结果表明,具有等腰梯形凹槽的QTF有利于优化应力分布并提高机电转换效率。气体传感实验(乙炔CH)结果表明,具有正等腰梯形凹槽的T形QTF的信号峰值和信噪比分别比具有矩形横截面叉指的普通QTF高出1.44倍和1.85倍。