Suppr超能文献

探索子宫内膜癌的潜在因果遗传变异和基因:开放目标遗传学、孟德尔随机化和多组织全转录组关联分析。

Exploring potential causal genetic variants and genes for endometrial cancer: Open Targets Genetics, Mendelian randomization, and multi-tissue transcriptome-wide association analysis.

作者信息

Zhang Guorui, Mao Su, Yuan Guangwei, Wang Yang, Yang Jingyun, Dai Yuxin

机构信息

Department of Obstetrics and Gynecology, State Key Laboratory of Complex, Severe and Rare Diseases, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.

出版信息

Transl Cancer Res. 2024 Nov 30;13(11):5971-5982. doi: 10.21037/tcr-24-887. Epub 2024 Nov 21.

Abstract

BACKGROUND

Endometrial cancer (EC) is the most common gynecological malignancy in developed countries, with incidence rates continuing to rise globally. However, the precise mechanisms underlying EC pathogenesis remain largely unexplored. This study aims to prioritize genes associated with EC by leveraging multi-omics data through various bioinformatic methods.

METHODS

We utilized the Open Targets Genetics (OTG) database to pinpoint potential causal variants and target genes for EC. To explore the pleiotropic effects of gene expression on EC, we applied the Summary-based Mendelian Randomization (SMR) using summary data from a genome-wide association study (GWAS) on EC and expression quantitative trait loci (eQTL) data from the Consortium for the Architecture of Gene Expression (CAGE). We also conducted a cross-tissue transcriptome-wide association study (TWAS) employing sparse canonical correlation analysis (sCCA). Results from the sCCA TWAS and single-tissue TWAS for 22 tissues were combined using the aggregated Cauchy association test (sCCA + ACAT) to identify genes with cis-regulated expression levels linked to EC.

RESULTS

The OTG database recognized 15 genomic loci showing independent association with EC. Gene prioritization highlighted nine genes with relatively high locus-to-gene (L2G) scores (≥0.5), the majority of which aligned with those identified using the closest gene. Colocalization analysis identified 11 additional genes at these loci. Our SMR analysis revealed two genes, and , exhibiting a significant pleiotropic association with EC. Cross-tissue TWAS identified 31 genes whose expression was significantly associated with EC after correction for multiple testing, with four genes (, , , and ) also confirmed by gene colocalization in the OTG analysis.

CONCLUSIONS

We confirmed the involvement of in the pathogenesis of EC and identified several other genes that may contribute to EC development. These findings offer new insights into the genetic mechanisms underlying EC and may inform future research and therapeutic strategies.

摘要

背景

子宫内膜癌(EC)是发达国家最常见的妇科恶性肿瘤,全球发病率持续上升。然而,EC发病机制的精确分子机制在很大程度上仍未得到充分探索。本研究旨在通过各种生物信息学方法利用多组学数据对与EC相关的基因进行优先级排序。

方法

我们利用开放靶点遗传学(OTG)数据库来确定EC的潜在因果变异和靶基因。为了探讨基因表达对EC的多效性影响,我们使用来自EC全基因组关联研究(GWAS)的汇总数据和来自基因表达结构联盟(CAGE)的表达数量性状位点(eQTL)数据,应用基于汇总的孟德尔随机化(SMR)方法。我们还采用稀疏典型相关分析(sCCA)进行跨组织转录组全关联研究(TWAS)。使用汇总柯西关联检验(sCCA + ACAT)将sCCA TWAS和22个组织的单组织TWAS结果相结合,以识别与EC相关的顺式调控表达水平的基因。

结果

OTG数据库识别出15个与EC独立相关的基因组位点。基因优先级排序突出了9个具有相对较高的基因座到基因(L2G)分数(≥0.5) 的基因,其中大多数与使用最接近基因识别的基因一致。共定位分析在这些位点上又鉴定出11个基因。我们的SMR分析揭示了两个基因, 和 ,与EC表现出显著的多效性关联。跨组织TWAS识别出31个基因,其表达在多重检验校正后与EC显著相关,其中4个基因( , , ,和 )也在OTG分析中通过基因共定位得到证实。

结论

我们证实了 在EC发病机制中的作用,并鉴定出其他几个可能促成EC发生发展的基因。这些发现为EC潜在的遗传机制提供了新的见解,并可能为未来的研究和治疗策略提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/112d/11651742/6b1108364422/tcr-13-11-5971-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验