Kim Juhee, Xin Xiaoyue, Hawkins Gary L, Huang Qingguo, Huang Ching-Hua
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Department of Civil, Environmental and Construction Engineering, University of Hawai'i at Ma̅noa, Honolulu, Hawaii 96822, United States.
ACS ES T Water. 2024 Nov 15;4(12):5428-5436. doi: 10.1021/acsestwater.4c00541. eCollection 2024 Dec 13.
Wastewater treatment plants (WWTPs) could be conduits of polyfluoroalkyl substances (PFAS) contaminants in the environment. This study investigated the fate of 40 PFAS compounds across nine municipal WWTPs with varying treatment capacity and processes. High concentrations of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) were detected in wastewater, with the ratio of their total concentrations (∑PFCAs/∑PFSAs) always greater than one. Transformation of precursors by activated sludge processes significantly increased the concentrations of short-chain PFCAs (e.g., perfluoropentanoic acid (PFPeA) and perfluorohexanoic acid (PFHxA)), while further advanced treatment processes offered minimal removal of perfluoroalkyl acids. Treatment capacity and PFAS removal efficiency showed no apparent correlation. The maximum possible PFAS loads discharged from WWTPs were 340-9645 g·year, similar to those entering the WWTPs. Among six regulated PFAS compounds, detection frequency was 100% for five (perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorononanoic acid (PFNA), perfluorobutanesulfonic acid (PFBS), and perfluorohexanesulfonic acid (PFHxS)) and 67% for hexafluoropropylene oxide dimer acid (HFPO-DA) (Gen-X). Concentrations of PFOA and PFOS in WWTP discharges consistently exceeded 4 ng·L. The hazard index (HI) for mixtures containing two or more of the four PFAS (PFNA, PFBS, PFHxS, and HFPO-DA) ranged from 0.2 to 6.1. These findings indicate that wastewater discharges may pose a risk, emphasizing the need for enhanced PFAS removal strategies in wastewater treatment processes.
污水处理厂(WWTPs)可能是环境中多氟烷基物质(PFAS)污染物的传导途径。本研究调查了40种PFAS化合物在9个具有不同处理能力和工艺的城市污水处理厂中的去向。在废水中检测到高浓度的全氟烷基羧酸(PFCAs)和全氟烷基磺酸(PFSAs),其总浓度之比(∑PFCAs/∑PFSAs)始终大于1。活性污泥工艺对前体物质的转化显著增加了短链PFCAs(如全氟戊酸(PFPeA)和全氟己酸(PFHxA))的浓度,而进一步的深度处理工艺对全氟烷基酸的去除效果甚微。处理能力与PFAS去除效率之间没有明显的相关性。污水处理厂排放的PFAS最大可能负荷为340 - 9645 g·年,与进入污水处理厂的负荷相似。在六种受监管的PFAS化合物中,五种(全氟辛酸(PFOA)、全氟辛烷磺酸(PFOS)、全氟壬酸(PFNA)、全氟丁烷磺酸(PFBS)和全氟己烷磺酸(PFHxS))的检测频率为100%,六氟环氧丙烷二聚酸(HFPO - DA)(Gen - X)的检测频率为67%。污水处理厂排放物中PFOA和PFOS的浓度一直超过4 ng·L。含有四种PFAS(PFNA、PFBS、PFHxS和HFPO - DA)中两种或更多种的混合物的危害指数(HI)范围为0.2至6.1。这些发现表明,废水排放可能构成风险,强调了在废水处理过程中加强PFAS去除策略的必要性。