文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多参数磁共振成像的神经网络模型术前预测乳腺癌中人表皮生长因子受体2低表达

Preoperatively predicting human epidermal growth factor receptor 2-low expression in breast cancer using neural network model based on multiparameter magnetic resonance imaging.

作者信息

Zhao Suhong, Chen Peipei, Wang Xiaojuan, Zheng Zhaoxiu, Hui Ruirui, Pang Guodong

机构信息

Department of Radiology, The Second Hospital of Shandong University, Jinan, China.

Department of Radiology, Shandong Linglong Yingcheng Hospital, Yantai, China.

出版信息

Quant Imaging Med Surg. 2024 Dec 5;14(12):8387-8401. doi: 10.21037/qims-24-428. Epub 2024 Nov 29.


DOI:10.21037/qims-24-428
PMID:39698610
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11652052/
Abstract

BACKGROUND: Preoperative prediction of human epidermal growth factor receptor 2 (HER2)-low expression using magnetic resonance imaging (MRI) can enhance the selection of clinical treatment strategies and enhance patient outcomes. Herein, we investigated the value of a neural network model constructed with multiparametric MRI in diagnosing HER2-low breast cancer. METHODS: This retrospective study involved two different centers. A total of 895 breast cancer patients (903 lesions) were enrolled from the Second Hospital of Shandong University (known as "Center 1") between January 2015 to December 2022. They were allocated to the training set (626 cases/632 lesions) and the internal validation set (269 cases/271 lesions). The external validation set included 100 patients (100 lesions) from the Qilu Hospital of Shandong University (referred to as "Center 2") between June 2021 to December 2022. All patients were subgrouped into HER2-low and HER2-0 expression groups. We used t-tests, Wilcoxon rank sum tests, and Chi-squared tests or Fisher's exact test to compare the dynamic contrast-enhanced MRI features (morphological/hemodynamic features), and the apparent diffusion coefficient (ADC) values. A neural network model was constructed using the Neuralnet package in R, with the architecture specified as c(5,2) for the hidden layers. Bootstrapping was used for internal validation. The diagnostic performance in the training set was analyzed using receiver operating characteristic (ROC) curves. The clinical effectiveness of the model was validated using a decision curve analysis (DCA). RESULTS: HER2-low breast cancer lesions had irregular morphology, high early enhancement rate, and low ADC value compared to HER2-0 expressed lesions. The differences were significant (P<0.05). We then constructed a neural network model using these significant variables. ROC analysis showed that the area under the ROC curve of the model for diagnosing HER2-low breast cancer in the training, internal validation, and external validation sets was 0.757 [95% confidence interval (CI): 0.712-0.802], 0.728 (95% CI: 0.658-0.798), and 0.791 (95% CI: 0.693-0.890), respectively. The DCA demonstrated that the net benefit of the model was significantly greater than zero at a predicted probability of 0.764. CONCLUSIONS: The neural network model based on MRI features is an effective tool in predicting HER2-low breast cancer, which may facilitate clinical treatment decision-making.

摘要

背景:利用磁共振成像(MRI)对人表皮生长因子受体2(HER2)低表达进行术前预测,可优化临床治疗策略的选择并改善患者预后。在此,我们研究了基于多参数MRI构建的神经网络模型在诊断HER2低表达乳腺癌中的价值。 方法:这项回顾性研究涉及两个不同中心。2015年1月至2022年12月期间,山东大学第二医院(称为“中心1”)共纳入895例乳腺癌患者(903个病灶)。他们被分配到训练集(626例/632个病灶)和内部验证集(269例/271个病灶)。外部验证集包括2021年6月至2022年12月期间山东大学齐鲁医院(称为“中心2”)的100例患者(100个病灶)。所有患者被分为HER2低表达组和HER2零表达组。我们使用t检验、Wilcoxon秩和检验、卡方检验或Fisher精确检验来比较动态对比增强MRI特征(形态学/血流动力学特征)和表观扩散系数(ADC)值。使用R语言中的Neuralnet包构建神经网络模型,隐藏层结构指定为c(5,2)。采用自抽样法进行内部验证。使用受试者操作特征(ROC)曲线分析训练集中模型的诊断性能。使用决策曲线分析(DCA)验证模型的临床有效性。 结果:与HER2零表达的病灶相比,HER2低表达的乳腺癌病灶形态不规则、早期强化率高且ADC值低。差异具有统计学意义(P<0.05)。然后,我们使用这些显著变量构建了一个神经网络模型。ROC分析显示,该模型在训练集、内部验证集和外部验证集中诊断HER2低表达乳腺癌的ROC曲线下面积分别为0.757 [95%置信区间(CI):0.712 - 0.802]、0.728(95% CI:0.658 - 0.798)和0.791(95% CI:0.693 - 0.890)。DCA表明,在预测概率为0.764时,该模型的净效益显著大于零。 结论:基于MRI特征的神经网络模型是预测HER2低表达乳腺癌的有效工具,可能有助于临床治疗决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746e/11652052/af17af740f55/qims-14-12-8387-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746e/11652052/4c61a3b97741/qims-14-12-8387-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746e/11652052/688df8fc5959/qims-14-12-8387-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746e/11652052/bd2338995131/qims-14-12-8387-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746e/11652052/a089b8f34a08/qims-14-12-8387-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746e/11652052/af17af740f55/qims-14-12-8387-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746e/11652052/4c61a3b97741/qims-14-12-8387-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746e/11652052/688df8fc5959/qims-14-12-8387-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746e/11652052/bd2338995131/qims-14-12-8387-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746e/11652052/a089b8f34a08/qims-14-12-8387-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746e/11652052/af17af740f55/qims-14-12-8387-f5.jpg

相似文献

[1]
Preoperatively predicting human epidermal growth factor receptor 2-low expression in breast cancer using neural network model based on multiparameter magnetic resonance imaging.

Quant Imaging Med Surg. 2024-12-5

[2]
Potential Antihuman Epidermal Growth Factor Receptor 2 Target Therapy Beneficiaries: The Role of MRI-Based Radiomics in Distinguishing Human Epidermal Growth Factor Receptor 2-Low Status of Breast Cancer.

J Magn Reson Imaging. 2023-11

[3]
Distinguishing Low Expression Levels of Human Epidermal Growth Factor Receptor 2 in Breast Cancer: Insights from Qualitative and Quantitative Magnetic Resonance Imaging Analysis.

Tomography. 2025-3-10

[4]
Discrimination between HER2-overexpressing, -low-expressing, and -zero-expressing statuses in breast cancer using multiparametric MRI-based radiomics.

Eur Radiol. 2024-9

[5]
Development and validation of a radiomics-based nomogram for predicting two subtypes of HER2-negative breast cancer.

Gland Surg. 2024-12-31

[6]
[Preoperative prediction of HER-2 expression status in breast cancer based on MRI radiomics model].

Zhonghua Zhong Liu Za Zhi. 2024-5-23

[7]
Development and Validation of a Deep Learning System to Differentiate HER2-Zero, HER2-Low, and HER2-Positive Breast Cancer Based on Dynamic Contrast-Enhanced MRI.

J Magn Reson Imaging. 2025-5

[8]
Dynamic contrast-enhanced magnetic resonance imaging features and apparent diffusion coefficient value of HER2-positive/HR-negative breast carcinoma.

Quant Imaging Med Surg. 2023-8-1

[9]
Machine learning models for differential diagnosing HER2-low breast cancer: A radiomics approach.

Medicine (Baltimore). 2024-8-16

[10]
Multiparametric MRI and Radiomics for the Prediction of HER2-Zero, -Low, and -Positive Breast Cancers.

Radiology. 2023-8

本文引用的文献

[1]
Development of a multiparametric model for predicting the response to neoadjuvant chemotherapy in breast cancer.

Transl Cancer Res. 2024-2-29

[2]
Dynamic contrast-enhanced magnetic resonance imaging features and apparent diffusion coefficient value of HER2-positive/HR-negative breast carcinoma.

Quant Imaging Med Surg. 2023-8-1

[3]
A quantitative heterogeneity analysis approach to molecular subtype recognition of breast cancer in dynamic contrast-enhanced magnetic imaging images from radiomics data.

Quant Imaging Med Surg. 2023-7-1

[4]
Survival differences between HER2-0 and HER2-low-expressing breast cancer - A meta-analysis of early breast cancer patients.

Crit Rev Oncol Hematol. 2023-5

[5]
Potential Antihuman Epidermal Growth Factor Receptor 2 Target Therapy Beneficiaries: The Role of MRI-Based Radiomics in Distinguishing Human Epidermal Growth Factor Receptor 2-Low Status of Breast Cancer.

J Magn Reson Imaging. 2023-11

[6]
Multimodality Imaging Review of HER2-positive Breast Cancer and Response to Neoadjuvant Chemotherapy.

Radiographics. 2023-2

[7]
HER2-Low Breast Cancer: Where Are We?

Breast Care (Basel). 2022-12

[8]
Multiparametric MRI Features of Breast Cancer Molecular Subtypes.

Medicina (Kaunas). 2022-11-23

[9]
Diagnostic value of core needle biopsy for determining HER2 status in breast cancer, especially in the HER2-low population.

Breast Cancer Res Treat. 2023-1

[10]
Correlation of dynamic contrast-enhanced MRI and diffusion-weighted MR imaging with prognostic factors and subtypes of breast cancers.

Front Oncol. 2022-8-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索