文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

乳腺癌分子亚型的多参数 MRI 特征。

Multiparametric MRI Features of Breast Cancer Molecular Subtypes.

机构信息

Department of Radiology and Medical Imaging, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400374 Cluj-Napoca, Romania.

出版信息

Medicina (Kaunas). 2022 Nov 23;58(12):1716. doi: 10.3390/medicina58121716.


DOI:10.3390/medicina58121716
PMID:36556918
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9785392/
Abstract

Background and Objectives: Breast cancer (BC) molecular subtypes have unique incidence, survival and response to therapy. There are five BC subtypes described by immunohistochemistry: luminal A, luminal B HER2 positive and HER2 negative, triple negative (TNBC) and HER2-enriched. Multiparametric breast MRI (magnetic resonance imaging) provides morphological and functional characteristics of breast tumours and is nowadays recommended in the preoperative setting. Aim: To evaluate the multiparametric MRI features (T2-WI, ADC values and DCE) of breast tumours along with breast density and background parenchymal enhancement (BPE) features among different BC molecular subtypes. Materials and Methods: This was a retrospective study which included 344 patients. All underwent multiparametric breast MRI (T2WI, ADC and DCE sequences) and features were extracted according to the latest BIRADS lexicon. The inter-reader agreement was assessed using the intraclass coefficient (ICC) between the ROI of ADC obtained from the two breast imagers (experienced and moderately experienced). Results: The study population was divided as follows: 89 (26%) with luminal A, 39 (11.5%) luminal B HER2 positive, 168 (48.5%) luminal B HER2 negative, 41 (12%) triple negative (TNBC) and 7 (2%) with HER2 enriched. Luminal A tumours were associated with special histology type, smallest tumour size and persistent kinetic curve (all p-values < 0.05). Luminal B HER2 negative tumours were associated with lowest ADC value (0.77 × 10−3 mm2/s2), which predicts the BC molecular subtype with an accuracy of 0.583. TNBC were associated with asymmetric and moderate/marked BPE, round/oval masses with circumscribed margins and rim enhancement (all p-values < 0.05). HER2 enriched BC were associated with the largest tumour size (mean 37.28 mm, p-value = 0.02). Conclusions: BC molecular subtypes can be associated with T2WI, ADC and DCE MRI features. ADC can help predict the luminal B HER2 negative cases.

摘要

背景与目的:乳腺癌(BC)分子亚型具有独特的发病、生存和治疗反应。免疫组织化学可将 BC 分为五种亚型:Luminal A、Luminal B(HER2 阳性和 HER2 阴性)、三阴性(TNBC)和 HER2 富集型。多参数乳腺 MRI(磁共振成像)提供了乳腺肿瘤的形态和功能特征,目前推荐在术前使用。目的:评估不同 BC 分子亚型的乳腺肿瘤的多参数 MRI 特征(T2-WI、ADC 值和 DCE)以及乳腺密度和背景实质增强(BPE)特征。材料与方法:这是一项回顾性研究,共纳入 344 例患者。所有患者均行多参数乳腺 MRI(T2WI、ADC 和 DCE 序列)检查,并根据最新的 BIRADS 词汇表提取特征。采用两位乳腺成像医师(经验丰富和经验中等)获得的 ADC ROI 的组内相关系数(ICC)评估读者间的一致性。结果:研究人群分为以下几类:89 例(26%)为 Luminal A 型,39 例(11.5%)为 Luminal B(HER2 阳性),168 例(48.5%)为 Luminal B(HER2 阴性),41 例(12%)为三阴性(TNBC),7 例(2%)为 HER2 富集型。Luminal A 型肿瘤与特殊组织学类型、最小肿瘤大小和持续动力学曲线有关(所有 p 值均<0.05)。Luminal B(HER2 阴性)肿瘤的 ADC 值最低(0.77×10−3mm2/s2),预测 BC 分子亚型的准确率为 0.583。TNBC 与不对称和中度/显著 BPE、圆形/椭圆形肿块、边界清晰的边缘和边缘增强有关(所有 p 值均<0.05)。HER2 富集型 BC 与最大肿瘤大小有关(平均 37.28mm,p 值=0.02)。结论:BC 分子亚型与 T2WI、ADC 和 DCE MRI 特征相关。ADC 有助于预测 Luminal B(HER2 阴性)病例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/9785392/a4ffb7ea4be7/medicina-58-01716-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/9785392/9fdf87582e48/medicina-58-01716-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/9785392/bd7ccd2aff55/medicina-58-01716-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/9785392/571893a32f3a/medicina-58-01716-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/9785392/5353b4c2ddc7/medicina-58-01716-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/9785392/276a4d8cc32e/medicina-58-01716-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/9785392/a4ffb7ea4be7/medicina-58-01716-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/9785392/9fdf87582e48/medicina-58-01716-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/9785392/bd7ccd2aff55/medicina-58-01716-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/9785392/571893a32f3a/medicina-58-01716-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/9785392/5353b4c2ddc7/medicina-58-01716-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/9785392/276a4d8cc32e/medicina-58-01716-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/9785392/a4ffb7ea4be7/medicina-58-01716-g006.jpg

相似文献

[1]
Multiparametric MRI Features of Breast Cancer Molecular Subtypes.

Medicina (Kaunas). 2022-11-23

[2]
Characterization of breast cancer subtypes based on quantitative assessment of intratumoral heterogeneity using dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging.

Eur Radiol. 2022-2

[3]
Triple-negative invasive breast cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging: comparison with other breast cancer subtypes.

Eur Radiol. 2012-4-17

[4]
Breast MRI background parenchymal enhancement as an imaging bridge to molecular cancer sub-type.

Eur J Radiol. 2019-2-15

[5]
Is there a correlation between 3T multiparametric MRI and molecular subtypes of breast cancer?

Eur J Radiol. 2018-9-24

[6]
Radiomic Signatures Derived from Diffusion-Weighted Imaging for the Assessment of Breast Cancer Receptor Status and Molecular Subtypes.

Mol Imaging Biol. 2020-4

[7]
Is simultaneous multi-slice readout-segmented echo-planar imaging valuable for predicting molecular subtypes of breast cancer?

Eur J Radiol. 2022-5

[8]
Improved discrimination of molecular subtypes in invasive breast cancer: Comparison of multiple quantitative parameters from breast MRI.

Magn Reson Imaging. 2021-4

[9]
Differences in morphological features and minimum apparent diffusion coefficient values among breast cancer subtypes using 3-tesla MRI.

Eur J Radiol. 2016-1

[10]
Correlation of dynamic contrast-enhanced MRI and diffusion-weighted MR imaging with prognostic factors and subtypes of breast cancers.

Front Oncol. 2022-8-5

引用本文的文献

[1]
Predicting Human Epidermal Growth Factor Receptor 2 Expression in Breast Cancer Based on Radiomics of MRI Habitat and US.

Breast Cancer (Dove Med Press). 2025-8-15

[2]
Distinguishing Low Expression Levels of Human Epidermal Growth Factor Receptor 2 in Breast Cancer: Insights from Qualitative and Quantitative Magnetic Resonance Imaging Analysis.

Tomography. 2025-3-10

[3]
Preoperatively predicting human epidermal growth factor receptor 2-low expression in breast cancer using neural network model based on multiparameter magnetic resonance imaging.

Quant Imaging Med Surg. 2024-12-5

[4]
HER-2 expression is correlated with multimodal imaging features in breast cancer: a pilot study.

Ann Med. 2024-12

[5]
The potential role of breast MRI in evaluation of triple-negative breast cancer and fibroadenoma of less than 3 cm.

Transl Cancer Res. 2024-8-31

[6]
Correlations of Imaging and Therapy in Breast Cancer Based on Molecular Patterns: An Important Issue in the Diagnosis of Breast Cancer.

Int J Mol Sci. 2024-8-4

[7]
Histogram analysis comparison of readout-segmented and single-shot echo-planar imaging for differentiating luminal from non-luminal breast cancer.

Sci Rep. 2024-5-27

[8]
Identification of Luminal A breast cancer by using deep learning analysis based on multi-modal images.

Front Oncol. 2023-11-17

[9]
Multiparametric Approach to Breast Cancer With Emphasis on Magnetic Resonance Imaging in the Era of Personalized Breast Cancer Treatment.

Invest Radiol. 2024-1-1

[10]
Clinical and Imaging Features of MRI Screen-Detected Breast Cancer.

Clin Breast Cancer. 2024-1

本文引用的文献

[1]
Are Mutation Carrier Patients Different from Non-Carrier Patients? Genetic, Pathology, and US Features of Patients with Breast Cancer.

Cancers (Basel). 2022-6-2

[2]
Comparison of clinical and magnetic resonance imaging findings of triple-negative breast cancer with non-triple-negative tumours.

Pol J Radiol. 2021-5-7

[3]
Imaging features of breast cancer molecular subtypes: state of the art.

J Pathol Transl Med. 2021-1

[4]
Correlation between imaging features and molecular subtypes of breast cancer in young women (≤30 years old).

Jpn J Radiol. 2020-11

[5]
Preliminary study on discriminating HER2 2+ amplification status of breast cancers based on texture features semi-automatically derived from pre-, post-contrast, and subtraction images of DCE-MRI.

PLoS One. 2020-6-17

[6]
The association between MRI findings and breast cancer subtypes: focused on the combination patterns on diffusion-weighted and T2-weighted images.

Breast Cancer. 2020-9

[7]
Mucinous versus medullary breast carcinoma: mammography, ultrasound, and MRI findings.

Clin Radiol. 2020-7

[8]
Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast cancer receptor status and molecular subtypes: initial results.

Breast Cancer Res. 2019-9-12

[9]
Peritumoral ADC values in breast cancer: region of interest selection, associations with hyaluronan intensity, and prognostic significance.

Eur Radiol. 2019-7-29

[10]
Breast MRI background parenchymal enhancement as an imaging bridge to molecular cancer sub-type.

Eur J Radiol. 2019-2-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索