Reddy Doodipala Samba, Zhu Neo, Challa Trisha, Gajjela Sai, Desai Hetvi, Ramakrishnan Sreevidhya, Wu Xin
Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas.
Curr Protoc. 2024 Dec;4(12):e70053. doi: 10.1002/cpz1.70053.
Neuronal injury, neurodegeneration, and neuroanatomical changes are key pathological features of various neurological disorders, including epilepsy, stroke, traumatic brain injury, Parkinson's disease, autism, and Alzheimer's disease. Accurate quantification of neurons and interneurons in different brain regions is critical for understanding the progression of neurodegenerative disorders in animal models. Traditional scoring methods are often superficial, biased, and unreliable for evaluating neuropathology. Stereology, a quantitative tool that uses 3-dimensional visualization of cells, provides a robust protocol for evaluating neuronal injury and neurodegeneration. This article presents a comprehensive and optimized stereology protocol for unbiased quantification of neuronal injury, neurodegeneration, and neurogenesis in rat and mouse models. This protocol involves precise counting of injured neurons, surviving neurons, and interneurons through immunohistochemical processing of brain sections for NeuN(+) principal neurons, parvalbumin (PV+) interneurons, doublecortin (DCX+) newborn neurons, and Fluoro-Jade B (FJB+)-stained injured cells. Predefined hippocampal and amygdala regions were identified and analyzed using a Visiopharm stereology software-driven compound microscope. Cell density and absolute cell numbers were determined using the optical fractionation method. Our stereology protocol accurately estimated 1.5 million total NeuN(+) principal neurons and 0.05 million PV(+) interneurons in the rat hippocampus, as well as 1.2 million total principal neurons and 0.025 million interneurons in the mouse hippocampus. FJB(+) counting provided a quantitative index of damaged neurons, and the stereology of DCX(+) neurons demonstrated the extent of neurogenesis. Overall, this stereology protocol enables precise, accurate, and unbiased counting of total neurons in any brain region. This offers a reliable quantitative tool for studying neuronal injury and protection in various models of acute brain injury, neurotoxicity, and chronic neurological disorders. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Stereological quantification of principal neurons, interneurons, and immature neurons in the hippocampus in rat brain sections Basic Protocol 2: Stereological quantification of principal neurons, interneurons, and immature neurons in the hippocampus in mouse brain sections Basic Protocol 3: Stereological quantification of injured or necrotized cells stained with Fluoro-Jade B in the hippocampus and amygdala in rats Basic Protocol 4: Stereological quantification of injured or necrotized cells stained with Fluoro-Jade B in the hippocampus and amygdala regions in mice Basic Protocol 5: Brain fixation and histology processing Basic Protocol 6: Immunochemistry of principal neurons, interneurons, and newborn neurons Basic Protocol 7: Fluoro-Jade B staining of injured neurons.
神经元损伤、神经退行性变和神经解剖学变化是包括癫痫、中风、创伤性脑损伤、帕金森病、自闭症和阿尔茨海默病在内的各种神经系统疾病的关键病理特征。准确量化不同脑区的神经元和中间神经元对于理解动物模型中神经退行性疾病的进展至关重要。传统的评分方法在评估神经病理学方面往往是表面的、有偏差的且不可靠的。体视学作为一种利用细胞三维可视化的定量工具,为评估神经元损伤和神经退行性变提供了可靠的方案。本文提出了一种全面且优化的体视学方案,用于在大鼠和小鼠模型中对神经元损伤、神经退行性变和神经发生进行无偏量化。该方案通过对脑切片进行免疫组织化学处理,精确计数损伤神经元、存活神经元和中间神经元,这些脑切片用于检测NeuN(+)主神经元、小白蛋白(PV+)中间神经元、双皮质素(DCX+)新生神经元以及氟玉红B(FJB+)染色的损伤细胞。使用Visiopharm体视学软件驱动的复合显微镜识别并分析预定义的海马体和杏仁核区域。使用光学分割法确定细胞密度和绝对细胞数量。我们的体视学方案准确估计了大鼠海马体中总计150万个NeuN(+)主神经元和5万个PV(+)中间神经元,以及小鼠海马体中总计120万个主神经元和2.5万个中间神经元。FJB(+)计数提供了受损神经元的定量指标,而DCX(+)神经元的体视学显示了神经发生的程度。总体而言,该体视学方案能够精确、准确且无偏地计数任何脑区的总神经元。这为研究急性脑损伤、神经毒性和慢性神经系统疾病的各种模型中的神经元损伤和保护提供了可靠的定量工具。© 2024威利期刊有限责任公司。基本方案1:大鼠脑切片中海马体主神经元、中间神经元和未成熟神经元的体视学量化 基本方案2:小鼠脑切片中海马体主神经元、中间神经元和未成熟神经元的体视学量化 基本方案3:大鼠海马体和杏仁核中氟玉红B染色的损伤或坏死细胞的体视学量化 基本方案4:小鼠海马体和杏仁核区域中氟玉红B染色的损伤或坏死细胞的体视学量化 基本方案5:脑固定和组织学处理 基本方案6:主神经元、中间神经元和新生神经元的免疫化学 基本方案7:损伤神经元的氟玉红B染色