Rappe Anna, McWilliams Thomas G
Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Autophagy. 2025 Feb;21(2):487-489. doi: 10.1080/15548627.2024.2426115. Epub 2024 Dec 19.
Studies using mitophagy reporter mice have established steady-state landscapes of mitochondrial destruction in mammalian tissues, sparking intense interest in basal mitophagy. Yet how basal mitophagy is modified by healthy aging in diverse brain cell types has remained a mystery. We present a comprehensive spatiotemporal analysis of mitophagy and macroautophagy dynamics in the aging mammalian brain, reporting critical region- and cell-specific turnover trajectories in a longitudinal study. We demonstrate that the physiological regulation of mitophagy in the mammalian brain is cell-specific, dynamic and complex. Mitophagy increases significantly in the cerebellum and hippocampus during midlife, while remaining unchanged in the prefrontal cortex (PFC). Conversely, macroautophagy decreases in the hippocampus and PFC, but remains stable in the cerebellum. We also describe emergent lysosomal heterogeneity, with subsets of differential acidified lysosomes accumulating in the aging brain. We further establish midlife as a critical inflection point for autophagy regulation, which may be important for region-specific vulnerability and resilience to aging. By mapping autophagy dynamics at the single cell level within projection neurons, interneurons and microglia, to astrocytes and secretory cells, we provide a new framework for understanding brain aging and offer potential targets and timepoints for further study and intervention in neurodegenerative diseases.
使用线粒体自噬报告基因小鼠的研究已经确立了哺乳动物组织中线粒体破坏的稳态图景,引发了人们对基础线粒体自噬的浓厚兴趣。然而,在不同类型的脑细胞中,基础线粒体自噬如何因健康衰老而发生改变仍是一个谜。我们对衰老哺乳动物大脑中的线粒体自噬和巨自噬动力学进行了全面的时空分析,在一项纵向研究中报告了关键区域和细胞特异性的更新轨迹。我们证明,哺乳动物大脑中线粒体自噬的生理调节具有细胞特异性、动态性和复杂性。在中年时期,小脑和海马体中的线粒体自噬显著增加,而前额叶皮质(PFC)中的线粒体自噬保持不变。相反,海马体和PFC中的巨自噬减少,但在小脑中保持稳定。我们还描述了新出现的溶酶体异质性,在衰老大脑中积累了不同酸化溶酶体的亚群。我们进一步确定中年是自噬调节的关键转折点,这可能对区域特异性衰老易感性和恢复力很重要。通过在投射神经元、中间神经元和小胶质细胞、星形胶质细胞和分泌细胞内的单细胞水平绘制自噬动力学图谱,我们提供了一个理解大脑衰老的新框架,并为神经退行性疾病的进一步研究和干预提供了潜在的靶点和时间点。