Suppr超能文献

使用加权基因共表达网络分析(WGCNA)和机器学习鉴定并验证多关节型幼年特发性关节炎中的易感性模块和枢纽基因

Identification and validation of susceptibility modules and hub genes in polyarticular juvenile idiopathic arthritis using WGCNA and machine learning.

作者信息

Liu Junfeng, Fan Jianhui, Duan Hongxiang, Chen Guoming, Zhang Weihua, Wang Pingxi

机构信息

Department of Orthopedics, Dazhou Central Hospital, Dazhou, China.

Chengdu University of Traditional Chinese Medicine, Chengdu, China.

出版信息

Autoimmunity. 2025 Dec;58(1):2437239. doi: 10.1080/08916934.2024.2437239. Epub 2024 Dec 19.

Abstract

BACKGROUND

Juvenile idiopathic arthritis (JIA), superseding juvenile rheumatoid arthritis (JRA), is a chronic autoimmune disease affecting children and characterized by various types of childhood arthritis. JIA manifests clinically with joint inflammation, swelling, pain, and limited mobility, potentially leading to long-term joint damage if untreated. This study aimed to identify genes associated with the progression and prognosis of JIA polyarticular to enhance clinical diagnosis and treatment.

METHODS

We analyzed the gene expression omnibus (GEO) dataset GSE1402 to screen for differentially expressed genes (DEGs) in peripheral blood single nucleated cells (PBMCs) of JIA polyarticular patients. Weighted gene co-expression network analysis (WGCNA) was applied to identify key gene modules, and protein-protein interaction networks (PPIs) were constructed to select hub genes. The random forest model was employed for biomarker gene screening. Functional enrichment analysis was conducted using David's online database, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to annotate and identify potential JIA pathways. Hub genes were validated using the receiver operating characteristic (ROC) curve.

RESULTS

PHLDA1, EGR3, CXCL2, and PF4V1 were identified as significantly associated with the progression and prognosis of JIA polyarticular phenotype, demonstrating high diagnostic and prognostic assessment value.

CONCLUSION

These genes can be utilized as potential molecular biomarkers, offering valuable insights for the early diagnosis and personalized treatment of JIA polyarticular patients.

摘要

背景

青少年特发性关节炎(JIA)取代了青少年类风湿性关节炎(JRA),是一种影响儿童的慢性自身免疫性疾病,其特征为多种类型的儿童关节炎。JIA的临床表现为关节炎症、肿胀、疼痛和活动受限,如果不进行治疗,可能会导致长期关节损伤。本研究旨在识别与JIA多关节型的进展和预后相关的基因,以加强临床诊断和治疗。

方法

我们分析了基因表达综合数据库(GEO)数据集GSE1402,以筛选JIA多关节型患者外周血单个核细胞(PBMC)中的差异表达基因(DEG)。应用加权基因共表达网络分析(WGCNA)来识别关键基因模块,并构建蛋白质-蛋白质相互作用网络(PPI)以选择枢纽基因。采用随机森林模型进行生物标志物基因筛选。使用David在线数据库、基因本体论(GO)和京都基因与基因组百科全书(KEGG)通路富集分析进行功能富集分析,以注释和识别潜在的JIA通路。使用受试者工作特征(ROC)曲线对枢纽基因进行验证。

结果

PHLDA1、EGR3、CXCL2和PF4V1被确定与JIA多关节型表型的进展和预后显著相关,具有较高的诊断和预后评估价值。

结论

这些基因可作为潜在的分子生物标志物,为JIA多关节型患者的早期诊断和个性化治疗提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验