Suppr超能文献

利用浦项加速器实验室二期(PLS-II)的白色X射线开发一种结合微区和全场X射线荧光分析系统的早期进展。

The early development of a combined micro- and full-field X-ray fluorescence analysis system using white X-rays at PLS-II.

作者信息

Kim Min Woo, Ahn Kangwoo, Lee Chang Hun, Kim Tae Joo, Kim JongYul, Han Min Su, Mo Hyeong Uk, Kim Jina, Park Hyun Wook, Kwak Ho Jae, Kim Jong Hyun

机构信息

Pohang Accelerator Laboratory (PAL), POSTECH, Pohang 37673, Republic of Korea.

Neutron Science Division, Korean Atomic Energy Research Institute, Daejeon 34057, Republic of Korea.

出版信息

J Synchrotron Radiat. 2025 Jan 1;32(Pt 1):254-260. doi: 10.1107/S1600577524011111.

Abstract

X-ray fluorescence (XRF) is widely used to analyze elemental distributions in samples. Micro-XRF (µ-XRF), the most basic conventional XRF technique, offers good spatial resolution through precise 2D scanning with a micrometre-sized X-ray source. Recently, synchrotron based XRF analysis platforms have achieved nano-XRF with highly focused X-rays using polycapillary optics or mirrors, leveraging the excellent coherence of synchrotron radiation. However, XRF techniques are hindered by long data acquisition times (exceeding several hours) due to their point-by-point scanning approach, impeding large-area elemental mapping. Full-field XRF (FF-XRF), developed in the 2010s and based on the high brilliance of synchrotron X-rays, enables significantly shorter (less than a few minutes) data acquisition times via single-exposure imaging using a 2D X-ray detector. Nevertheless, it is constrained by relatively low spatial resolution and sensitivity. Hence, a new XRF platform is required to accommodate resolution demands to cover diverse experimental purposes. In this study, we developed a preliminary model of a novel XRF system that combines micro- and full-field XRF setups to address these limitations. This system allows easy mode switching while maintaining the region of interest of the imaging system within a single apparatus, simply by rotating the sample to face either detector depending on research purposes. We anticipate that this new XRF system will be widely utilized in various research fields as the initial XRF setup at Pohang Light Source-II.

摘要

X射线荧光(XRF)被广泛用于分析样品中的元素分布。微X射线荧光(µ-XRF)是最基本的传统XRF技术,通过使用微米级X射线源进行精确的二维扫描,提供了良好的空间分辨率。近年来,基于同步加速器的XRF分析平台利用同步辐射的优异相干性,通过使用多毛细管光学元件或反射镜产生高度聚焦的X射线,实现了纳米XRF。然而,由于采用逐点扫描方法,XRF技术的数据采集时间较长(超过数小时),这阻碍了大面积元素映射。全视野XRF(FF-XRF)于2010年代开发,基于同步加速器X射线的高亮度,通过使用二维X射线探测器进行单次曝光成像,能够显著缩短(少于几分钟)数据采集时间。尽管如此,它受到相对较低的空间分辨率和灵敏度的限制。因此,需要一个新的XRF平台来满足分辨率要求,以涵盖各种实验目的。在本研究中,我们开发了一种新型XRF系统的初步模型,该系统结合了微XRF和全视野XRF设置,以解决这些限制。该系统通过根据研究目的旋转样品使其面对相应探测器,在单个仪器内轻松进行模式切换,同时保持成像系统的感兴趣区域。我们预计,作为浦项光源二期的初始XRF设置,这种新的XRF系统将在各个研究领域得到广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fd9/11708863/047de354dd0f/s-32-00254-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验