Suppr超能文献

一种使用入侵图像数据集进行周边入侵检测的新型机器学习模型。

A novel machine learning model for perimeter intrusion detection using intrusion image dataset.

作者信息

Pitafi Shahneela, Anwar Toni, Widia I Dewa Made, Sharif Zubair, Yimwadsana Boonsit

机构信息

Computer & Information Sciences Department (CISD), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia.

Faculty of Vocational Studies, Universitas Brawijaya, Malang, East Java, Indonesia.

出版信息

PLoS One. 2024 Dec 19;19(12):e0313890. doi: 10.1371/journal.pone.0313890. eCollection 2024.

Abstract

Perimeter Intrusion Detection Systems (PIDS) are crucial for protecting any physical locations by detecting and responding to intrusions around its perimeter. Despite the availability of several PIDS, challenges remain in detection accuracy and precise activity classification. To address these challenges, a new machine learning model is developed. This model utilizes the pre-trained InceptionV3 for feature extraction on PID intrusion image dataset, followed by t-SNE for dimensionality reduction and subsequent clustering. When handling high-dimensional data, the existing Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm faces efficiency issues due to its complexity and varying densities. To overcome these limitations, this research enhances the traditional DBSCAN algorithm. In the enhanced DBSCAN, distances between minimal points are determined using an estimation for the epsilon values with the Manhattan distance formula. The effectiveness of the proposed model is evaluated by comparing it to state-of-the-art techniques found in the literature. The analysis reveals that the proposed model achieved a silhouette score of 0.86, while comparative techniques failed to produce similar results. This research contributes to societal security by improving location perimeter protection, and future researchers can utilize the developed model for human activity recognition from image datasets.

摘要

周边入侵检测系统(PIDS)对于通过检测其周边的入侵并做出响应来保护任何物理位置至关重要。尽管有多种PIDS可用,但在检测准确性和精确活动分类方面仍存在挑战。为了应对这些挑战,开发了一种新的机器学习模型。该模型利用预训练的InceptionV3对PID入侵图像数据集进行特征提取,然后使用t-SNE进行降维和后续聚类。在处理高维数据时,现有的基于密度的带噪声应用空间聚类(DBSCAN)算法由于其复杂性和密度变化而面临效率问题。为了克服这些限制,本研究对传统的DBSCAN算法进行了改进。在改进的DBSCAN中,使用曼哈顿距离公式对epsilon值进行估计来确定最小点之间的距离。通过将所提出的模型与文献中发现的最先进技术进行比较,评估了该模型的有效性。分析表明,所提出的模型实现了0.86的轮廓系数,而比较技术未能产生类似的结果。本研究通过改进位置周边保护为社会安全做出了贡献,未来的研究人员可以利用所开发的模型从图像数据集中进行人类活动识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226e/11658572/aa05251f106b/pone.0313890.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验