Suppr超能文献

深草:用于深度学习的多类杂草物种图像数据集。

DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning.

机构信息

College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.

出版信息

Sci Rep. 2019 Feb 14;9(1):2058. doi: 10.1038/s41598-018-38343-3.

Abstract

Robotic weed control has seen increased research of late with its potential for boosting productivity in agriculture. Majority of works focus on developing robotics for croplands, ignoring the weed management problems facing rangeland stock farmers. Perhaps the greatest obstacle to widespread uptake of robotic weed control is the robust classification of weed species in their natural environment. The unparalleled successes of deep learning make it an ideal candidate for recognising various weed species in the complex rangeland environment. This work contributes the first large, public, multiclass image dataset of weed species from the Australian rangelands; allowing for the development of robust classification methods to make robotic weed control viable. The DeepWeeds dataset consists of 17,509 labelled images of eight nationally significant weed species native to eight locations across northern Australia. This paper presents a baseline for classification performance on the dataset using the benchmark deep learning models, Inception-v3 and ResNet-50. These models achieved an average classification accuracy of 95.1% and 95.7%, respectively. We also demonstrate real time performance of the ResNet-50 architecture, with an average inference time of 53.4 ms per image. These strong results bode well for future field implementation of robotic weed control methods in the Australian rangelands.

摘要

近年来,随着其在农业生产中提高生产力的潜力,机器人除草技术的研究日益增多。大多数工作都集中在开发用于农田的机器人,而忽略了牧场牲畜面临的杂草管理问题。也许广泛采用机器人除草的最大障碍是在自然环境中对杂草种类进行稳健的分类。深度学习的无与伦比的成功使其成为识别复杂牧场环境中各种杂草种类的理想选择。这项工作贡献了第一个来自澳大利亚牧场的大型、公共、多类杂草物种图像数据集;为开发强大的分类方法以实现机器人除草的可行性奠定了基础。DeepWeeds 数据集包含 17509 张来自澳大利亚北部 8 个地点的 8 种具有国家重要性的杂草物种的标记图像。本文使用基准深度学习模型 Inception-v3 和 ResNet-50 展示了对数据集的分类性能的基准测试。这些模型的平均分类准确率分别为 95.1%和 95.7%。我们还展示了 ResNet-50 架构的实时性能,平均每张图像的推断时间为 53.4 毫秒。这些强劲的结果预示着未来在澳大利亚牧场实施机器人除草方法的前景广阔。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/927f/6375952/4888de68837b/41598_2018_38343_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验