Suppr超能文献

通过具有图灵结构的高效氮掺杂CoO电催化剂实现析氢、一氧化氮氧化和锌-硝酸盐电池用于能量转换与存储的组合。

The combination of hydrogen evolution, nitric oxide oxidation and Zn-nitrate battery for energy conversion and storage by an efficient nitrogen-dopped CoO electrocatalyst with Turing structure.

作者信息

Hao Minghui, Shen Dongcai, Li Quan, Xiao Zhengting, Liu Licheng, Li Chunhu, Wang Wentai

机构信息

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.

Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

出版信息

J Colloid Interface Sci. 2025 Apr;683(Pt 1):477-488. doi: 10.1016/j.jcis.2024.12.039. Epub 2024 Dec 11.

Abstract

We tuned the morphology from the needle-like Co(CO)(OH)·0.11HO to the unique Turing-structured CoCO through controlling the amount of glycerol in the solvothermal system, and then synthesized the Turing structure consisting of N-50 %-CoO hollow nanoparticles though the Kirkendall effect during nitriding process, which was applied as a novel bifunctional self-supporting electrode for efficient electrocatalytic hydrogen evolution reaction (HER) and electrocatalytic NO oxidation reaction (eNOOR). The eNOOR can be not only used as a substitution anode reaction of oxygen evolution reaction (OER) to couple with HER for efficient water splitting, but the production of nitrate from eNOOR also provides a strategy for the development of Zn-nitrate battery. The N-50 %-CoO electrode showed significant HER activity and excellent stability in 1 M KOH electrolyte, with an overpotential of 30 mV at a current density of 10 mA cm. While the eNOOR performance of the N-50 %-CoO electrode showed significantly increased NO yield of 163.2 mg cmh with NO concentration of 10 %, which was far more exceeding the most advanced nitrogen electro-oxidation. It is worth mentioning that the Zn-nitrate battery showed an open circuit voltage (OCV) of 1.36 V and a power density of 1.21 mW cm. Density function theory (DFT) and orbital theory results indicate that the doping of N in CoO facilitates the electrons transfer, and greatly reduces free energy of the decision step in the eNOOR reaction path (the second step NO*→NOOH*), leading to excellent catalytic activity. This study provides a strategy of "Killing three birds with one arrow", which can achieve the effective hydrogen production, removal of NO pollutant, and chemical energy storage of nitrate for power generation.

摘要

通过控制溶剂热体系中甘油的量,我们将针状的Co(CO)(OH)·0.11H₂O的形貌调整为独特的图灵结构CoCO₃,然后在氮化过程中通过柯肯达尔效应合成了由N-50%-CoO空心纳米颗粒组成的图灵结构,该结构被用作一种新型双功能自支撑电极,用于高效电催化析氢反应(HER)和电催化NO氧化反应(eNOOR)。eNOOR不仅可以用作析氧反应(OER)的替代阳极反应与HER耦合以实现高效水分解,而且eNOOR产生的硝酸盐还为硝酸锌电池的发展提供了一种策略。N-50%-CoO电极在1 M KOH电解液中表现出显著的HER活性和优异的稳定性,在电流密度为10 mA cm⁻²时过电位为30 mV。而N-50%-CoO电极的eNOOR性能显示,在NO浓度为10%时,NO产率显著提高,达到163.2 mg cm⁻² h⁻¹,远远超过了最先进的氮电氧化性能。值得一提的是,硝酸锌电池的开路电压(OCV)为1.36 V,功率密度为1.21 mW cm⁻²。密度泛函理论(DFT)和轨道理论结果表明,N在CoO中的掺杂促进了电子转移,并大大降低了eNOOR反应路径中决定步骤(第二步NO*→NOOH*)的自由能,从而导致优异的催化活性。本研究提供了一种“一箭三雕”的策略,可实现有效的制氢、去除NO污染物以及将硝酸盐化学储能用于发电。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验