Suppr超能文献

Kinematics of abdominal aortic Aneurysms.

作者信息

Jamshidian Mostafa, Wittek Adam, Sekhavat Saeideh, Miller Karol

机构信息

Intelligent Systems for Medicine Laboratory, The University of Western Australia, Perth, Western Australia, Australia.

Intelligent Systems for Medicine Laboratory, The University of Western Australia, Perth, Western Australia, Australia.

出版信息

J Biomech. 2025 Jan;179:112484. doi: 10.1016/j.jbiomech.2024.112484. Epub 2024 Dec 12.

Abstract

A search in Scopus within "Article title, Abstract, Keywords" unveils 2,444 documents focused on the biomechanics of Abdominal Aortic Aneurysm (AAA), mostly on AAA wall stress. Only 24 documents investigated AAA kinematics, an important topic that could potentially offer significant insights into the biomechanics of AAA. In this paper, we present an image-based approach for patient-specific, in vivo, and non-invasive AAA kinematic analysis using patient's time-resolved 3D computed tomography angiography (4D-CTA) images, with an objective to measure wall displacement and strain during the cardiac cycle. Our approach relies on regularized deformable image registration for estimating wall displacement, estimation of the local wall strain as the ratio of its normal displacement to its local radius of curvature, and local surface fitting with non-deterministic outlier detection for estimating the wall radius of curvature. We verified our approach against synthetic ground truth image data created by warping a 3D-CTA image of AAA using a realistic displacement field obtained from a finite element biomechanical model. We applied our approach to assess AAA wall displacements and strains in ten patients. Our kinematic analysis results indicated that the 99th percentile of circumferential wall strain, among all patients, ranged from 2.62% to 5.54%, with an average of 4.45% and a standard deviation of 0.87%. We also observed that AAA wall strains are significantly lower than those of a healthy aorta. Our work demonstrates that the registration-based measurement of AAA wall displacements in the direction normal to the wall is sufficiently accurate to reliably estimate strain from these displacements.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验