Suppr超能文献

用于腹主动脉瘤运动分析的4D-CTA图像和几何数据集。

4D-CTA image and geometry dataset for kinematic analysis of abdominal aortic aneurysms.

作者信息

Jamshidian Mostafa, Wittek Adam, Sekhavat Saeideh, Alkhatib Farah, Ritter Jens Carsten, Parizel Paul M, Liepvre Donatien Le, Bernard Florian, Minvielle Ludovic, Fondanèche Antoine, Polce Jane, Wood Christopher, Miller Karol

机构信息

Intelligent Systems for Medicine Laboratory, The University of Western Australia, Perth, Western Australia, Australia.

Department of Mechanical Engineering, The University of Western Australia, Perth, Western Australia, Australia.

出版信息

Data Brief. 2025 Jun 17;61:111797. doi: 10.1016/j.dib.2025.111797. eCollection 2025 Aug.

Abstract

This article presents a dataset used in the article "Kinematics of Abdominal Aortic Aneurysms" [1], published in the Journal of Biomechanics. The dataset is publicly available for download from the Zenodo data repository (10.5281/zenodo.15477710). The dataset includes time-resolved 3D computed tomography angiography (4D-CTA) images of abdominal aortic aneurysm (AAA) captured throughout the cardiac cycle from ten patients diagnosed with AAA, along with ten patient-specific AAA geometries extracted from these images. Typically, the 4D-CTA dataset for each patient contains ten electrocardiogram (ECG)-gated 3D-CTA image frames acquired over a cardiac cycle, capturing both the systolic and diastolic phases of the AAA configuration. For method verification, the dataset also includes synthetic ground truth data generated from Patient 1's 3D-CTA AAA image in the diastolic phase. The ground truth data includes the patient-specific finite element (FE) biomechanical model and a synthetic systolic 3D-CTA image. The synthetic systolic image was generated by warping Patient 1's diastolic 3D-CTA image using the realistic displacement field obtained from the AAA biomechanical FE model. The images were acquired at Fiona Stanley Hospital in Western Australia and provided to the researchers at the Intelligent Systems for Medicine Laboratory at The University of Western Australia (ISML-UWA), where image-based AAA kinematic analysis was performed using a newly created algorithm, as described in [1]. The AAA geometries were extracted using an automated image processing pipeline comprising AI-based segmentation with PRAEVAorta software by NUREA (https://www.nurea-soft.com/), automated post-processing with the ISML-UWA in-house code (https://arxiv.org/abs/2403.07238), and surface model extraction using the freely available BioPARR (Biomechanics-based Prediction of Aneurysm Rupture Risk) (https://bioparr.mech.uwa.edu.au/) and 3D Slicer (https://www.slicer.org/) software packages [2,3]. Our dataset enabled the analysis of AAA wall displacement and strain throughout the cardiac cycle using a non-invasive, in vivo, image registration-based approach [1]. The use of widely adopted, open-source file formats-NRRD for images and STL for geometries-facilitates broad applicability and reusability in AAA biomechanics studies that require patient-specific geometry and information about AAA kinematics during cardiac cycle.

摘要

本文展示了一篇发表于《生物力学杂志》的文章《腹主动脉瘤的运动学》[1]中所使用的数据集。该数据集可从Zenodo数据存储库(10.5281/zenodo.15477710)公开下载。数据集包括十名被诊断为腹主动脉瘤(AAA)患者在整个心动周期内采集的腹主动脉瘤时间分辨三维计算机断层血管造影(4D-CTA)图像,以及从这些图像中提取的十个患者特异性的AAA几何模型。通常,每个患者的4D-CTA数据集包含在一个心动周期内采集的十帧心电图(ECG)门控三维CTA图像,捕捉了AAA形态的收缩期和舒张期。为了进行方法验证,数据集还包括从患者1舒张期的3D-CTA AAA图像生成的合成地面真值数据。地面真值数据包括患者特异性的有限元(FE)生物力学模型和一张合成收缩期3D-CTA图像。合成收缩期图像是通过使用从AAA生物力学FE模型获得的逼真位移场对患者1的舒张期3D-CTA图像进行变形生成的。这些图像在西澳大利亚的菲奥娜·斯坦利医院采集,并提供给西澳大利亚大学医学智能系统实验室(ISML-UWA)的研究人员,在那里使用一种新创建的算法进行了基于图像的AAA运动学分析,如[1]中所述。AAA几何模型是使用一个自动化图像处理管道提取的,该管道包括使用NUREA公司的PRAEVAorta软件(https://www.nurea-soft.com/)基于人工智能的分割、使用ISML-UWA内部代码(https://arxiv.org/abs/2403.07238)进行的自动化后处理,以及使用免费的BioPARR(基于生物力学的动脉瘤破裂风险预测)(https://bioparr.mech.uwa.edu.au/)和3D Slicer(https://www.slicer.org/)软件包进行的表面模型提取[2,3]。我们的数据集能够使用一种基于非侵入性、体内、基于图像配准的方法分析整个心动周期内AAA壁的位移和应变[1]。使用广泛采用的开源文件格式——用于图像的NRRD和用于几何模型的STL——有助于在需要患者特异性几何模型和心动周期内AAA运动学信息的AAA生物力学研究中广泛应用和重复使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c317/12266568/c14f2237c95a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验