Suppr超能文献

高阶相互作用分析量化了表观基因组中的协调性,揭示了歌舞伎综合征中的新型生物学关系。

Higher order interaction analysis quantifies coordination in the epigenome revealing novel biological relationships in Kabuki syndrome.

作者信息

Cuvertino Sara, Garner Terence, Martirosian Evgenii, Walusimbi Bridgious, Kimber Susan J, Banka Siddharth, Stevens Adam

机构信息

Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, School of Biological Sciences, The University of Manchester, Manchester, UK.

Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine, and Health, School of Biological Sciences, The University of Manchester, Manchester, UK.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae667.

Abstract

Complex direct and indirect relationships between multiple variables, termed higher order interactions (HOIs), are characteristics of all natural systems. Traditional differential and network analyses fail to account for the omic datasets richness and miss HOIs. We investigated peripheral blood DNA methylation data from Kabuki syndrome type 1 (KS1) and control individuals, identified 2,002 differentially methylated points (DMPs), and inferred 17 differentially methylated regions, which represent only 189 DMPs. We applied hypergraph models to measure HOIs on all the CpGs and revealed differences in the coordination of DMPs with lower entropy and higher coordination of the peripheral epigenome in KS1 implying reduced network complexity. Hypergraphs also capture epigenomic trans-relationships, and identify biologically relevant pathways that escape the standard analyses. These findings construct the basis of a suitable model for the analysis of organization in the epigenome in rare diseases, which can be applied to investigate mechanism in big data.

摘要

多个变量之间复杂的直接和间接关系,称为高阶相互作用(HOIs),是所有自然系统的特征。传统的微分分析和网络分析无法考虑组学数据集的丰富性,因而会遗漏高阶相互作用。我们研究了1型歌舞伎综合征(KS1)患者和对照个体的外周血DNA甲基化数据,鉴定出2002个差异甲基化位点(DMP),并推断出17个差异甲基化区域,这些区域仅代表189个DMP。我们应用超图模型来测量所有CpG上的高阶相互作用,并揭示了KS1中具有较低熵的DMP协调差异以及外周表观基因组的较高协调性,这意味着网络复杂性降低。超图还能捕捉表观基因组的转关系,并识别出常规分析无法发现的生物学相关途径。这些发现构建了一个适用于分析罕见病表观基因组组织的模型基础,该模型可应用于大数据中的机制研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验