Suppr超能文献

干旱胁迫下玉米(Zea mays)幼苗中ZmHDZ4的功能研究

Functional study of ZmHDZ4 in maize (Zea mays) seedlings under drought stress.

作者信息

Xie Xiaowen, Ren Zhenzhen, Su Huihui, Abou-Elwafa Salah Fatouh, Shao Jing, Ku Lixia, Jia Lin, Tian Zhiqiang, Wei Li

机构信息

College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450046, China.

Agronomy Department, Faculty of Agriculture, Assiut University, Assiut, Egypt.

出版信息

BMC Plant Biol. 2024 Dec 19;24(1):1209. doi: 10.1186/s12870-024-05951-3.

Abstract

BACKGROUND

Maize is a major feed and industrial crop and pivotal for ensuring global food security. In light of global warming and climate change, improving maize tolerance to water deficit is crucial. Identification and functional analysis of drought tolerance genes have potential practical importance in understanding the molecular mechanisms of drought stress.

RESULTS

Here, we identified a maize Homeodomain-Leucine Zipper I, ZmHDZ4, in maize seedlings that is associated with drought tolerance. We demonstrated that ZmHDZ4 has transcriptional activation activity, exclusively localized in the nucleus. Several Cis-acting elements associated with abiotic stress have been identified in the core promoter region of ZmHDZ4. Under drought-stressed conditions, transgenic maize plants overexpressing ZmHDZ4 exhibited significantly higher relative water content and peroxidase (POD) and superoxidase dismutase (SOD) activities compared to wide-type plants, while displaying lower malondialdehyde (MAD) content. The expressions of ZmMFS1-88, ZmGPM573, and ZmPHD9 were significantly repressed in the ZmHDZ4-OE plants under drought-stressed conditions, indicating that ZmMFS1-88, ZmGPM573, and ZmPHD9 were the candidate target genes of ZmHDZ4.

CONCLUSIONS

ZmHDZ4 is involved in the regulation of drought stress tolerance in maize by participating in osmotic regulation, sugar metabolism pathways, and hormone regulation.

摘要

背景

玉米是一种主要的饲料和工业作物,对确保全球粮食安全至关重要。鉴于全球变暖和气候变化,提高玉米对水分亏缺的耐受性至关重要。耐旱基因的鉴定和功能分析对于理解干旱胁迫的分子机制具有潜在的实际意义。

结果

在此,我们在玉米幼苗中鉴定出一个与耐旱性相关的玉米同源异型域-亮氨酸拉链I,即ZmHDZ4。我们证明ZmHDZ4具有转录激活活性,仅定位于细胞核。在ZmHDZ4的核心启动子区域鉴定出了几个与非生物胁迫相关的顺式作用元件。在干旱胁迫条件下,过表达ZmHDZ4的转基因玉米植株与野生型植株相比,表现出显著更高的相对含水量以及过氧化物酶(POD)和超氧化物歧化酶(SOD)活性,同时丙二醛(MAD)含量较低。在干旱胁迫条件下,ZmMFS1-88、ZmGPM573和ZmPHD9在ZmHDZ4-OE植株中的表达受到显著抑制,表明ZmMFS1-88、ZmGPM573和ZmPHD9是ZmHDZ4的候选靶基因。

结论

ZmHDZ4通过参与渗透调节、糖代谢途径和激素调节,参与玉米干旱胁迫耐受性的调控。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d92d/11656746/99816955140f/12870_2024_5951_Fig1_HTML.jpg

相似文献

1
Functional study of ZmHDZ4 in maize (Zea mays) seedlings under drought stress.
BMC Plant Biol. 2024 Dec 19;24(1):1209. doi: 10.1186/s12870-024-05951-3.
2
Regulatory mechanisms used by ZmMYB39 to enhance drought tolerance in maize (Zea mays) seedlings.
Plant Physiol Biochem. 2024 Jun;211:108696. doi: 10.1016/j.plaphy.2024.108696. Epub 2024 May 3.
5
Overexpression of the homeobox-leucine zipper protein ATHB-6 improves the drought tolerance of maize (Zea mays L.).
Plant Sci. 2022 Mar;316:111159. doi: 10.1016/j.plantsci.2021.111159. Epub 2021 Dec 22.
8
Functional analysis of a late embryogenesis abundant protein ZmNHL1 in maize under drought stress.
J Plant Physiol. 2023 Jan;280:153883. doi: 10.1016/j.jplph.2022.153883. Epub 2022 Nov 30.
9
Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings.
Mol Plant. 2017 Mar 6;10(3):456-469. doi: 10.1016/j.molp.2016.10.003. Epub 2016 Oct 13.
10
, a maize NF-Y transcription factor, positively regulates drought and salt stress response in .
GM Crops Food. 2025 Dec;16(1):28-45. doi: 10.1080/21645698.2024.2438421. Epub 2024 Dec 24.

引用本文的文献

本文引用的文献

1
ZmABF4-ZmVIL2/ZmFIP37 module enhances drought tolerance in maize seedlings.
Plant Cell Environ. 2024 Sep;47(9):3605-3618. doi: 10.1111/pce.14954. Epub 2024 May 15.
2
Two maize homologs of mammalian proton-coupled folate transporter, ZmMFS_1-62 and ZmMFS_1-73, are essential to salt and drought tolerance.
Plant Physiol Biochem. 2024 May;210:108623. doi: 10.1016/j.plaphy.2024.108623. Epub 2024 Apr 11.
3
Reactive oxygen species signaling in melatonin-mediated plant stress response.
Plant Physiol Biochem. 2024 Feb;207:108398. doi: 10.1016/j.plaphy.2024.108398. Epub 2024 Jan 24.
4
Analysis of the molecular mechanisms regulating how ZmEREB24 improves drought tolerance in maize (Zea mays) seedlings.
Plant Physiol Biochem. 2024 Feb;207:108292. doi: 10.1016/j.plaphy.2023.108292. Epub 2023 Dec 22.
6
ZmELF6-ZmPRR37 module regulates maize flowering and salt response.
Plant Biotechnol J. 2024 Apr;22(4):929-945. doi: 10.1111/pbi.14236. Epub 2023 Nov 27.
7
Molecular mechanism analysis of ZmRL6 positively regulating drought stress tolerance in maize.
Stress Biol. 2023 Nov 16;3(1):47. doi: 10.1007/s44154-023-00125-x.
9
Functional analysis of a late embryogenesis abundant protein ZmNHL1 in maize under drought stress.
J Plant Physiol. 2023 Jan;280:153883. doi: 10.1016/j.jplph.2022.153883. Epub 2022 Nov 30.
10
CRISPR/Cas9 mediated gene-editing of transcription factor enhances drought tolerance in soybean ( [L.] Merr.).
Front Plant Sci. 2022 Aug 19;13:988505. doi: 10.3389/fpls.2022.988505. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验