Suppr超能文献

聚乙二醇干扰素α-2b治疗48周的慢性乙型肝炎患者HBsAg清除率的预测模型

Predictive model for HBsAg clearance rate in chronic hepatitis B patients treated with pegylated interferon α-2b for 48 weeks.

作者信息

Tan Zhili, Kong Nan, Zhang Qiran, Gao Xiaohong, Shang Jia, Geng Jiawei, You Ruirui, Wang Tao, Guo Ying, Wu Xiaoping, Zhang Wenhong, Qu Lihong, Zhang Fengdi

机构信息

Department of Infectious Diseases, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China.

Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

出版信息

Hepatol Int. 2025 Apr;19(2):358-367. doi: 10.1007/s12072-024-10764-5. Epub 2024 Dec 19.

Abstract

BACKGROUND AND AIMS

Chronic hepatitis B (CHB) is a major global health concern. This study aims to investigate the factors influencing hepatitis B surface antigen (HBsAg) clearance in CHB patients treated with pegylated interferon α-2b (Peg-IFNα-2b) for 48 weeks and to establish a predictive model.

METHODS

This analysis is based on the "OASIS" project, a prospective real-world multicenter study in China. We included CHB patients who completed 48 weeks of Peg-IFNα-2b treatment. Patients were randomly assigned to a training set and a validation set in a ratio of approximately 4:1 by spss 26.0, and were divided into clearance and non-clearance groups based on HBsAg status at 48 weeks. Clinical data were analyzed using SPSS 26.0, employing chi-square tests for categorical data and Mann-Whitney U tests for continuous variables. Significant factors (p < 0.05) were incorporated into a binary logistic regression model to identify independent predictors of HBsAg clearance. The predictive model's performance was evaluated using ROC curve analysis.

RESULTS

We included 868 subjects, divided into the clearance group (187 cases) and the non-clearance group (681 cases). They were randomly assigned to a training set (702 cases) and a validation set (166 cases). Key predictors included female gender (OR = 1.879), lower baseline HBsAg levels (OR = 0.371), and cirrhosis (OR = 0.438). The final predictive model was: Logit(P) = 0.92 + Gender (Female) * 0.66 - HBsAg (log) * 0.96 - Cirrhosis * 0.88. ROC analysis showed an AUC of 0.80 for the training set and 0.82 for the validation set, indicating good predictive performance.

CONCLUSION

Gender, baseline HBsAg levels, and cirrhosis are significant predictors of HBsAg clearance in CHB patients after 48 weeks of Peg-IFNα-2b therapy. The developed predictive model demonstrates high accuracy and potential clinical utility.

摘要

背景与目的

慢性乙型肝炎(CHB)是全球主要的健康问题。本研究旨在探讨聚乙二醇化干扰素α-2b(Peg-IFNα-2b)治疗48周的CHB患者中影响乙肝表面抗原(HBsAg)清除的因素,并建立预测模型。

方法

本分析基于“绿洲”项目,这是一项在中国开展的前瞻性真实世界多中心研究。我们纳入了完成48周Peg-IFNα-2b治疗的CHB患者。通过spss 26.0以约4:1的比例将患者随机分配到训练集和验证集,并根据48周时的HBsAg状态分为清除组和未清除组。使用SPSS 26.0分析临床数据,分类数据采用卡方检验,连续变量采用曼-惠特尼U检验。将显著因素(p < 0.05)纳入二元逻辑回归模型以确定HBsAg清除的独立预测因素。使用ROC曲线分析评估预测模型的性能。

结果

我们纳入了868名受试者,分为清除组(187例)和未清除组(681例)。他们被随机分配到训练集(702例)和验证集(166例)。关键预测因素包括女性(OR = 1.879)、较低的基线HBsAg水平(OR = 0.371)和肝硬化(OR = 0.438)。最终的预测模型为:Logit(P) = 0.92 + 性别(女性)* 0.66 - HBsAg(对数)* 0.96 - 肝硬化* 0.88。ROC分析显示训练集的AUC为0.80,验证集的AUC为0.82,表明预测性能良好。

结论

性别、基线HBsAg水平和肝硬化是Peg-IFNα-2b治疗48周后CHB患者HBsAg清除的显著预测因素。所建立的预测模型显示出高准确性和潜在的临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3654/12003487/e2f2375f04a4/12072_2024_10764_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验