Gasior Kelsey I
Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA.
Bull Math Biol. 2024 Dec 19;87(1):15. doi: 10.1007/s11538-024-01393-y.
Partial Rank Correlation Coefficient (PRCC) is a powerful type of global sensitivity analysis. Usually performed following Latin Hypercube Sampling (LHS), this analysis can highlight the parameters in a mathematical model producing the observed results, a crucial step when using models to understand real-world phenomena and guide future experiments. Recently, Gasior et al. performed LHS and PRCC when modeling the influence of cell-cell contact and TGF- signaling on the epithelial mesenchymal transition (Gasior et al. in J Theor Biol 546:111160, 2022). Though their analysis provided insight into how these tumor-level factors can impact intracellular signaling during the transition, their results were potentially impacted by nondimensionalizing the model prior to performing sensitivity analysis. This work seeks to understand the true impact of nondimensionalization on sensitivity analysis by performing LHS and PRCC on both the original model that Gasior et al. proposed and seven different nondimensionalizations. Parameter ranges were kept small to capture shifts in the values that originally produced bistable behavior. By comparing these eight different iterations, this work shows that the issues from performing sensitivity analysis following nondimensionalization are two-fold: (1) nondimensionalization can obscure or exclude important parameters from in-depth analysis and (2) how a model is nondimensionalized can, potentially, change analysis results. Ultimately, this work cautions against using nondimensionalization prior to sensitivity analysis if the subsequent results are meant to guide future experiments.
偏秩相关系数(PRCC)是一种强大的全局敏感性分析方法。这种分析通常在拉丁超立方抽样(LHS)之后进行,它可以突出数学模型中产生观测结果的参数,这是使用模型理解现实世界现象并指导未来实验的关键步骤。最近,加西奥尔等人在对细胞间接触和转化生长因子β信号传导对上皮-间质转化的影响进行建模时,进行了LHS和PRCC分析(加西奥尔等人,《理论生物学杂志》546:111160,2022)。尽管他们的分析深入了解了这些肿瘤水平的因素在转化过程中如何影响细胞内信号传导,但他们的结果可能受到在进行敏感性分析之前对模型进行无量纲化的影响。这项工作旨在通过对加西奥尔等人提出的原始模型以及七种不同的无量纲化模型进行LHS和PRCC分析,来了解无量纲化对敏感性分析的真正影响。参数范围保持较小,以捕捉最初产生双稳态行为的值的变化。通过比较这八种不同的迭代,这项工作表明在无量纲化之后进行敏感性分析存在两方面的问题:(1)无量纲化可能会使重要参数在深入分析中变得模糊或被排除在外;(2)模型的无量纲化方式可能会改变分析结果。最终,如果后续结果旨在指导未来实验,这项工作告诫在敏感性分析之前不要使用无量纲化。