Gotta Jennifer, Gruenewald Leon D, Reschke Philipp, Booz Christian, Mahmoudi Scherwin, Stieltjes Bram, Choi Moon Hyung, D'Angelo Tommaso, Bernatz Simon, Vogl Thomas J, Sinkus Ralph, Grimm Robert, Strecker Ralph, Haberkorn Sebastian, Koch Vitali
Department of Radiology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany.
Department of Radiology, Universitätsspital Basel, Basel, Switzerland.
NMR Biomed. 2025 Jan;38(1):e5301. doi: 10.1002/nbm.5301.
Given the increasing global prevalence of metabolic syndrome, this study aimed to assess the potential of MRI-derived radiomics in noninvasively grading fibrosis. The study included 79 prospectively enrolled participants who had undergone MRE due to known or suspected liver disease between November 2022 and September 2023. Among them, 48 patients were diagnosed with histopathologically confirmed liver fibrosis. A total of 107 radiomic features per patient were extracted from MRI imaging. The dataset was then divided into training and test sets for model development and validation. Stepwise feature reduction was employed to identify the most relevant features and subsequently used to train a gradient-boosted tree model. The gradient-boosted tree model, trained on the training cohort with identified radiomic features to differentiate fibrosis grades, exhibited good performances, achieving AUC values from 0.997 to 0.998. In the independent test cohort of 24 patients, the radiomics model demonstrated AUC values ranging from 0.617 to 0.830, with the highest AUC of 0.830 (95% CI 0.520-0.830) for classifying fibrosis grade 2. Incorporating ADC values did not improve the model's performance. In conclusion, our study emphasizes the significant promise of using radiomics analysis on MRI images for noninvasively staging liver fibrosis. This method provides valuable insights into tissue characteristics and patterns, enabling a retrospective liver fibrosis severity assessment from nondedicated MRI scans.
鉴于代谢综合征在全球的患病率不断上升,本研究旨在评估磁共振成像(MRI)衍生的放射组学在非侵入性肝纤维化分级中的潜力。该研究纳入了79名前瞻性招募的参与者,他们在2022年11月至2023年9月期间因已知或疑似肝脏疾病接受了磁共振弹性成像(MRE)检查。其中,48例患者经组织病理学确诊为肝纤维化。每位患者共从MRI图像中提取了107个放射组学特征。然后将数据集分为训练集和测试集,用于模型开发和验证。采用逐步特征约简来识别最相关的特征,随后用于训练梯度提升树模型。在具有已识别放射组学特征的训练队列上训练的梯度提升树模型,用于区分纤维化等级,表现出良好的性能,曲线下面积(AUC)值达到0.997至0.998。在24例患者的独立测试队列中,放射组学模型的AUC值范围为0.617至0.830,用于分类2级纤维化时AUC最高为0.830(95%可信区间0.520 - 0.830)。纳入表观扩散系数(ADC)值并未改善模型性能。总之,我们的研究强调了对MRI图像进行放射组学分析用于非侵入性肝纤维化分期的巨大前景。该方法为组织特征和模式提供了有价值的见解,能够从非专用MRI扫描中进行回顾性肝纤维化严重程度评估。