Suppr超能文献

量子隧穿:一个世纪以来大振幅运动的历史与奥秘

Quantum Tunneling: History and Mystery of Large Amplitude Motions over a Century.

作者信息

Nguyen Ha Vinh Lam

机构信息

Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France.

Institut Universitaire de France (IUF), 1 rue Descartes, F-75231 Paris cedex 05, France.

出版信息

J Phys Chem Lett. 2025 Jan 9;16(1):104-113. doi: 10.1021/acs.jpclett.4c02914. Epub 2024 Dec 20.

Abstract

Large amplitude motions (LAMs), most notably represented by proton tunneling, mark a significant departure from small amplitude vibrations where protons merely oscillate around their equilibrium positions. These substantial displacements require tunneling through potential energy barriers, leading to splittings in, e.g., rotational spectra. Since Hund's pioneering work in 1927, proton tunneling has offered a unique glimpse into the internal dynamics of gas-phase molecules, with microwave spectroscopy being the key technique for such investigations. The ubiquous LAM type is methyl internal rotation, characterized by 3-fold potentials arising from the interaction between methyl rotors and their molecular frame, with the barrier hindering methyl torsion and the orientation of the torsional axis being defining features. Investigating methyl internal rotations plays a key role in fields ranging from molecular physics, where the methyl rotor serves as a sensitive probe for molecular structures, to atmospheric chemistry and astrophysics, where methyl-containing species have been detected in the Earth's atmosphere and interstellar environments and even discussed as potential probes for effects beyond the standard model of physics. Despite nearly a century of study, modeling methyl internal rotations with appropriate model Hamiltonians and fully understanding the origins of these motions, particularly the factors that influence torsional barriers, remain partially unresolved, reflecting the enduring mystery of quantum tunneling. This Perspective reviews the history of LAMs, highlights advances in decoding their complex spectra, and explores future research directions aimed at uncovering the remaining mysteries of these fascinating motions.

摘要

大幅度运动(LAMs),最显著的表现形式是质子隧穿,这与小幅度振动有很大不同,在小幅度振动中质子仅在其平衡位置附近振荡。这些大幅度位移需要隧穿势能垒,从而导致例如旋转光谱出现分裂。自1927年洪德的开创性工作以来,质子隧穿为气相分子的内部动力学提供了独特的视角,微波光谱学是此类研究的关键技术。普遍存在的LAM类型是甲基内旋转,其特征在于甲基转子与其分子框架之间的相互作用产生的三重势,阻碍甲基扭转的势垒以及扭转轴的取向是其决定性特征。研究甲基内旋转在从分子物理学到大气化学和天体物理学等领域都起着关键作用,在分子物理学中甲基转子可作为分子结构的灵敏探针,在大气化学和天体物理学中含甲基的物种已在地球大气和星际环境中被检测到,甚至被讨论为超出物理标准模型效应的潜在探针。尽管经过了近一个世纪的研究,但用适当的模型哈密顿量对甲基内旋转进行建模并充分理解这些运动的起源,特别是影响扭转势垒的因素,仍部分未得到解决,这反映了量子隧穿的持久奥秘。本综述回顾了大幅度运动的历史,突出了在解码其复杂光谱方面的进展,并探索了旨在揭开这些迷人运动剩余奥秘的未来研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a61/11726800/5427e2afa9d5/jz4c02914_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验