Suppr超能文献

功能化二硫化钼的形状和尺寸依赖性抗菌及抗生物膜特性

Shape and Size Dependent Antimicrobial and Anti-biofilm Properties of Functionalized MoS.

作者信息

Kaur Navjot, De Mrinmoy

机构信息

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.

出版信息

ACS Infect Dis. 2025 Jan 10;11(1):249-261. doi: 10.1021/acsinfecdis.4c00860. Epub 2024 Dec 20.

Abstract

Bacterial resistance, accelerated by the misuse of antibiotics, remains a critical concern for public health, promoting an ongoing exploration for cost-effective and safe antibacterial agents. Recently, there has been significant focus on various nanomaterials for the development of alternative antibiotics. Among these, molybdenum disulfide (MoS) has gained attention due to its unique chemical, physical, and electronic properties, as well as its semiconducting nature, biocompatibility, and colloidal stability, positioning it as a promising candidate for biomedical research. The impact of the shape and size of MoS nanomaterials on the antibacterial activity remains largely unexplored. In this study, we investigated the effect of the shape and size of MoS nanomaterials, such as quantum dots, nanoflowers, and nanosheets, on antimicrobial and anti-biofilm activity. As we had established earlier, functionalization with positively charged thiol ligands can enhance colloidal stability, biocompatibility, and antibacterial efficacy; we functionalized all targeted nanomaterials. Our results revealed that functionalized MoS quantum dots (F-MQDs) exhibited superior activity compared to functionalized MoS nanoflowers (F-MNFs) and functionalized MoS nanosheets (F-MNSs) against (SA), both drug-resistant (methicillin) and nonresistant strains. We observed very low minimum inhibitory concentration (MIC, 30 ng/mL) for F-MQDs. The observed trend in antibacterial efficacy was as follows: F-MQDs > F-MNFs ≥ F-MNSs. We explored the relevant mechanism related to the antibacterial activity where the balance between membrane depolarization and internalization plays the determining role. Furthermore, F-MQDs show enhanced anti-biofilm activity compared to F-MNFs and F-MNSs against mature MRSA biofilms. Due to the superior antibacterial and anti-biofilm activity of F-MQDs, we extended their application to wound healing. This study will help us to develop other appropriate surface modified nanomaterials for antibacterial and anti-biofilm activity for further applications such as antibacterial coatings, water disinfection, and wound healing.

摘要

抗生素的滥用加速了细菌耐药性,这仍然是公共卫生领域的一个关键问题,促使人们不断探索具有成本效益且安全的抗菌剂。最近,人们对各种用于开发替代抗生素的纳米材料给予了极大关注。其中,二硫化钼(MoS)因其独特的化学、物理和电子特性,以及其半导体性质、生物相容性和胶体稳定性,成为生物医学研究中一个有前途的候选材料。MoS纳米材料的形状和尺寸对抗菌活性的影响在很大程度上仍未得到探索。在本研究中,我们研究了MoS纳米材料(如量子点、纳米花和纳米片)的形状和尺寸对其抗菌和抗生物膜活性的影响。正如我们之前所证实的,用带正电荷的硫醇配体进行功能化可以提高胶体稳定性、生物相容性和抗菌效果;我们对所有目标纳米材料进行了功能化处理。我们的结果表明,与功能化的MoS纳米花(F-MNFs)和功能化的MoS纳米片(F-MNSs)相比,功能化的MoS量子点(F-MQDs)对耐甲氧西林金黄色葡萄球菌(SA)的耐药菌株和非耐药菌株均表现出更强的活性。我们观察到F-MQDs的最低抑菌浓度(MIC)非常低(30 ng/mL)。观察到的抗菌效果趋势如下:F-MQDs > F-MNFs ≥ F-MNSs。我们探讨了与抗菌活性相关的机制,其中膜去极化和内化之间的平衡起着决定性作用。此外,与F-MNFs和F-MNSs相比,F-MQDs对成熟的耐甲氧西林金黄色葡萄球菌生物膜表现出更强的抗生物膜活性。由于F-MQDs具有优异的抗菌和抗生物膜活性,我们将其应用扩展到伤口愈合领域。这项研究将有助于我们开发其他合适的表面改性纳米材料用于抗菌和抗生物膜活性,以进一步应用于抗菌涂层、水消毒和伤口愈合等领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验