Li Jingyu, Li Yuanxin, Du Mengxue, Zang Dongtian, Men Qingmei, Su Peisen, Guo Shangjing
College of Agriculture and Biology, Liaocheng University, Liaocheng, P.R. China.
Institute of Huanghe Studies, Liaocheng University, Liaocheng, P.R. China.
Physiol Plant. 2024 Nov-Dec;176(6):e70006. doi: 10.1111/ppl.70006.
Melatonin (MT) serves an indispensable function in plant development and their response to abiotic stress. Although numerous drought-tolerance genes have been ascertained in wheat, further investigation into the molecular pathways controlling drought stress tolerance remains necessary. In this investigation, it was observed that MT treatment markedly enhanced drought resistance in wheat by diminishing malondialdehyde (MDA) levels and augmenting the activity of antioxidant enzymes POD, APX, and CAT compared to untreated control plants. Transcriptomic analysis disclosed that melatonin treatment activated the tryptophan metabolism and flavonoid biosynthesis pathways. Furthermore, quantitative reverse transcription PCR (qRT-PCR) outcomes validated that the expression trends of these differentially expressed genes aligned with the transcriptomic data. Metabolomic profiling identified alterations in the abundance of several metabolites, including tryptamine, MT, formylanthranilate, 3-hydroxyanthranilate, 6-hydroxymelatonin, naringenin chalcone, astragalin, pinbanksin, and caffeoyl quinic acid. Co-expression analysis suggested that various transcription factors-encompassing AP2/ERF-ERF, WRKY, bZIP, C2H2, bHLH, NAC, and MYB-participated in controlling the differentially expressed genes across multiple pathways. Ultimately, these findings highlight that exogenous MT application bolsters wheat's drought tolerance through the modulation of tryptophan metabolism and flavonoid biosynthesis. These insights provide novel perspectives on the molecular frameworks mediating MT's effect on drought resistance and pinpointing candidate genes for potential genetic enhancement programs in wheat.
褪黑素(MT)在植物发育及其对非生物胁迫的响应中发挥着不可或缺的作用。尽管已在小麦中确定了许多耐旱基因,但仍有必要进一步研究控制耐旱胁迫的分子途径。在本研究中,观察到与未处理的对照植株相比,MT处理通过降低丙二醛(MDA)水平和提高抗氧化酶POD、APX和CAT的活性,显著增强了小麦的抗旱性。转录组分析表明,褪黑素处理激活了色氨酸代谢和类黄酮生物合成途径。此外,定量逆转录PCR(qRT-PCR)结果证实,这些差异表达基因的表达趋势与转录组数据一致。代谢组分析确定了几种代谢物丰度的变化,包括色胺、MT、甲酰基邻氨基苯甲酸、3-羟基邻氨基苯甲酸、6-羟基褪黑素、柚皮素查耳酮、黄芪苷、松树皮素和咖啡酰奎宁酸。共表达分析表明,包括AP2/ERF-ERF、WRKY、bZIP、C2H2、bHLH、NAC和MYB在内的多种转录因子参与了多条途径中差异表达基因的调控。最终,这些发现突出了外源MT通过调节色氨酸代谢和类黄酮生物合成来增强小麦的耐旱性。这些见解为介导MT对抗旱性影响的分子框架提供了新的视角,并为小麦潜在的遗传改良计划确定了候选基因。