Suppr超能文献

一种基于优化的图像重建的完全线性化交替方向乘子法(ADMM)算法。

A fully linearized ADMM algorithm for optimization based image reconstruction.

作者信息

Qiao Zhiwei, Redler Gage, Epel Boris, Halpern Howard

机构信息

School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, China.

Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA.

出版信息

J Xray Sci Technol. 2024;32(6):1481-1504. doi: 10.3233/XST-240029.

Abstract

BACKGROUND AND OBJECTIVE

Optimization based image reconstruction algorithm is an advanced algorithm in medical imaging. However, the corresponding solving algorithm is challenging because the model is usually large-scale and non-smooth. This work aims to devise a simple and convergent solver for optimization model.

METHODS

The alternating direction method of multipliers (ADMM) algorithm is a simple and effective solver of the optimization model. However, there always exists a sub-problem that has not close-form solution. One may use gradient descent algorithm to solve this sub-problem, but the step-size selection via line search is time-consuming. Or, one may use fast Fourier transform (FFT) to get a close-form solution if the sparse transform matrix is of special structure. In this work, we propose a fully linearized ADMM (FL-ADMM) algorithm that avoids line search to determine step-size and applies to sparse transform of any structure.

RESULTS

We derive the FL-ADMM algorithm instances for three total variation (TV) models in 2D computed tomography (CT). Further, we validate and evaluate one FL-ADMM algorithm and explore how two important factors impact convergence rate. These studies show that the FL-ADMM algorithm may accurately solve the optimization model.

CONCLUSION

The FL-ADMM algorithm is a simple, effective, convergent and universal solver of optimization model in image reconstruction. Compared to the standard ADMM algorithm, the new algorithm does not need time-consuming step-size line-search or special demand to sparse transform. It is a rapid prototyping tool for optimization based image reconstruction.

摘要

背景与目的

基于优化的图像重建算法是医学成像中的一种先进算法。然而,由于模型通常规模较大且不光滑,相应的求解算法具有挑战性。这项工作旨在为优化模型设计一种简单且收敛的求解器。

方法

乘子交替方向法(ADMM)算法是优化模型的一种简单有效的求解器。然而,总是存在一个没有闭式解的子问题。可以使用梯度下降算法来解决这个子问题,但通过线搜索选择步长很耗时。或者,如果稀疏变换矩阵具有特殊结构,可以使用快速傅里叶变换(FFT)来获得闭式解。在这项工作中,我们提出了一种完全线性化的ADMM(FL-ADMM)算法,该算法避免了线搜索来确定步长,并且适用于任何结构的稀疏变换。

结果

我们推导了二维计算机断层扫描(CT)中三种总变分(TV)模型的FL-ADMM算法实例。此外,我们验证并评估了一种FL-ADMM算法,并探讨了两个重要因素如何影响收敛速度。这些研究表明,FL-ADMM算法可以准确地求解优化模型。

结论

FL-ADMM算法是图像重建中优化模型的一种简单、有效、收敛且通用的求解器。与标准ADMM算法相比,新算法不需要耗时的步长线搜索,也不需要对稀疏变换有特殊要求。它是基于优化的图像重建的快速原型工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验