Suppr超能文献

用于肽反相液相色谱保留预测的伞形抽样分子动力学模拟

Umbrella Sampling MD Simulations for Retention Prediction in Peptide Reversed-phase Liquid Chromatography.

作者信息

Scrosati Pablo M, MacKay-Barr Evelyn H, Konermann Lars

机构信息

Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.

出版信息

Anal Chem. 2025 Jan 14;97(1):828-837. doi: 10.1021/acs.analchem.4c05428. Epub 2024 Dec 20.

Abstract

Reversed-phase liquid chromatography (RPLC) is an essential tool for separating complex mixtures such as proteolytic digests in bottom-up proteomics. There is growing interest in methods that can predict the RPLC retention behavior of peptides and other analytes. Already, existing algorithms provide excellent performance based on empirical rules or large sets of RPLC training data. Here we explored a new type of retention prediction strategy that relies on first-principles modeling of peptide interactions with a C18 stationary phase. We recently demonstrated that molecular dynamics (MD) simulations can provide atomistic insights into the behavior of peptides under RPLC conditions (. . , 95, 3892). However, the current work found that it is problematic to use conventional MD data for retention prediction, evident from a poor correlation between experimental retention times and MD-generated "fraction bound" values. We thus turned to umbrella sampling MD, a complementary technique that has previously been applied to probe noncovalent contacts in other types of systems. By restraining the peptide dynamic motions at various positions inside a C18-lined pore, we determined the free energy of the system as a function of peptide-stationary phase distance. Δ values determined in this way under various mobile phase conditions were linearly correlated with experimental retention times of tryptic test peptides. This work opens retention prediction avenues for novel types of stationary and mobile phases, and for peptides (or other analytes) having arbitrary chemical properties, without the need for RPLC reference data. Umbrella sampling can be used as a stand-alone tool, or it may serve to enhance existing retention prediction algorithms.

摘要

反相液相色谱(RPLC)是分离复杂混合物(如自下而上蛋白质组学中的蛋白水解消化物)的重要工具。人们对能够预测肽和其他分析物的RPLC保留行为的方法越来越感兴趣。目前,现有的算法基于经验规则或大量RPLC训练数据提供了出色的性能。在此,我们探索了一种新型的保留预测策略,该策略依赖于肽与C18固定相相互作用的第一性原理建模。我们最近证明,分子动力学(MD)模拟可以为RPLC条件下肽的行为提供原子尺度的见解(......,95,3892)。然而,当前的研究发现,使用传统的MD数据进行保留预测存在问题,这从实验保留时间与MD生成的“结合分数”值之间的不良相关性中可以明显看出。因此,我们转向伞形采样MD,这是一种先前已应用于探测其他类型系统中非共价接触的补充技术。通过限制肽在C18内衬孔内不同位置的动态运动,我们确定了系统的自由能作为肽与固定相距离的函数。在各种流动相条件下以这种方式确定的Δ值与胰蛋白酶测试肽的实验保留时间呈线性相关。这项工作为新型固定相和流动相以及具有任意化学性质的肽(或其他分析物)开辟了保留预测途径,而无需RPLC参考数据。伞形采样可以用作独立工具,也可以用于增强现有的保留预测算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验