Tymanskyj Stephen R, Escorce Althea, Karthikeyan Siddharth, Ma Le
Department of Neuroscience, Jefferson Center for Synaptic Biology, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107.
Mol Biol Cell. 2025 Feb 1;36(2):br5. doi: 10.1091/mbc.E23-07-0268. Epub 2024 Dec 20.
Development of neuronal connections is spatially and temporally controlled by extracellular cues which often activate their cognate cell surface receptors and elicit localized cellular responses. Here, we demonstrate the use of an optogenetic tool to activate receptor signaling locally to induce actin-mediated growth cone remodeling in neurons. Based on the light-induced interaction between Cryptochrome 2 (CRY2) and CIB1, we generated a bicistronic vector to co-expresses CRY2 fused to the intracellular domain of a guidance receptor and a membrane-anchored CIB1. When expressed in primary neurons, activation of the growth inhibitory PlexA4 receptor induced growth cone collapse, while activation of the growth stimulating TrkA receptor increased growth cone size. Moreover, local activation of either receptor not only elicited the predicted response in light-activated growth cones but also an opposite response in neighboring no-light-exposed growth cones of the same neuron. Finally, this tool was used to reorient growth cones toward or away from the site of light activation and to stimulate local actin polymerization for branch initiation along axonal shafts. These studies demonstrate the use of an optogenetic tool for precise spatial and temporal control of receptor signaling in neurons and support its future application in investigating cellular mechanisms of neuronal development and plasticity.
神经元连接的发育在空间和时间上受到细胞外信号的控制,这些信号通常会激活其同源细胞表面受体并引发局部细胞反应。在这里,我们展示了一种光遗传学工具的应用,该工具可局部激活受体信号,从而诱导神经元中肌动蛋白介导的生长锥重塑。基于隐花色素2(CRY2)与CIB1之间的光诱导相互作用,我们构建了一个双顺反子载体,用于共表达与导向受体细胞内结构域融合的CRY2和膜锚定的CIB1。当在原代神经元中表达时,生长抑制性PlexA4受体的激活会导致生长锥塌陷,而生长刺激性TrkA受体的激活会增加生长锥的大小。此外,任一受体的局部激活不仅在光激活的生长锥中引发了预期的反应,而且在同一神经元的相邻未暴露于光的生长锥中引发了相反的反应。最后,该工具被用于使生长锥朝向或远离光激活位点重新定向,并刺激轴突干上局部肌动蛋白聚合以启动分支。这些研究证明了光遗传学工具在神经元中对受体信号进行精确时空控制的应用,并支持其未来在研究神经元发育和可塑性的细胞机制中的应用。