Suppr超能文献

微生物功能基因在提高盐碱化草原盐生植物根际土壤养分有效性方面发挥着关键作用。

Microbial functional genes play crucial roles in enhancing soil nutrient availability of halophyte rhizospheres in salinized grasslands.

作者信息

Liang Meng, Wu Yang, Jiang Yaokun, Zhao Ziwen, Yang Jinqiu, Liu Guobin, Xue Sha

机构信息

The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China.

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China.

出版信息

Sci Total Environ. 2025 Jan 1;958:178160. doi: 10.1016/j.scitotenv.2024.178160. Epub 2024 Dec 19.

Abstract

Land degradation due to salinization threatens ecosystem health. Phytoremediation, facilitated by functional microorganisms, has gained attention for improving saline-alkali soils. However, the relationship between the functional potential of rhizosphere microbes involved in multi-element cycling and soil nutrient pools remain unclear. This study focused on the changes in functional genes related to carbon (C), nitrogen (N), and phosphorus (P) cycling in the rhizospheres of various halophytes and bulk soil in the grassland ecosystem of Chaka Salt Lake, Qinghai Province, China. Our evaluation of plant and soil characteristics revealed that halophyte growth increased soil hydrolase activity and nutrient levels, particularly available N. Significant differences were observed in foliage and root nutrients, rhizosphere soil properties, and microbial functional gene composition among plant species. Halophytes significantly altered the abundance of genes involved in C fixation (Calvin and DC/4-HB cycles), C degradation (starch, hemicellulose, cellulose, and pectin degradation), dissimilatory nitrate reduction (nirB), ammonification (ureC), organic P mineralization (phoA and ugpQ), P transport (phnE), and inorganic P dissolution (ppk1). C, N, and P cycling processes were closely related to soil N nutrients, available nutrient ratios, and C/N-cycling enzyme activities. Partial least squares path modeling (PLS-PM) analysis showed that microbial functional genes were directly associated with soil nutrient availability, with soil and plant variables indirectly affecting nutrient pools through the regulation of these genes. These findings enhance our understanding of the biochemical cycling in halophyte rhizospheres and highlight the role of microbial functional genes in saline-alkali soil restoration.

摘要

盐渍化导致的土地退化威胁着生态系统健康。在功能性微生物的促进作用下,植物修复在改善盐碱土壤方面受到了关注。然而,参与多元素循环的根际微生物功能潜力与土壤养分库之间的关系仍不清楚。本研究聚焦于中国青海省茶卡盐湖草原生态系统中各种盐生植物根际和土壤中与碳(C)、氮(N)和磷(P)循环相关的功能基因变化。我们对植物和土壤特征的评估表明,盐生植物的生长增加了土壤水解酶活性和养分水平,尤其是有效氮。在植物物种之间,叶片和根系养分、根际土壤性质以及微生物功能基因组成存在显著差异。盐生植物显著改变了参与碳固定(卡尔文循环和DC/4-HB循环)、碳降解(淀粉、半纤维素、纤维素和果胶降解)、异化硝酸盐还原(nirB)、氨化作用(ureC)、有机磷矿化(phoA和ugpQ)、磷转运(phnE)和无机磷溶解(ppk1)的基因丰度。碳、氮和磷循环过程与土壤氮养分、有效养分比例以及碳/氮循环酶活性密切相关。偏最小二乘路径建模(PLS-PM)分析表明,微生物功能基因与土壤养分有效性直接相关,土壤和植物变量通过这些基因的调控间接影响养分库。这些发现加深了我们对盐生植物根际生化循环的理解,并突出了微生物功能基因在盐碱土壤修复中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验