Kernaghan Ashlyn, Dang Duc Huy
School of the Environment, Trent University, Peterborough, Canada; Environmental and Life Science graduate program, Trent University, Peterborough, Canada.
School of the Environment, Trent University, Peterborough, Canada; Environmental and Life Science graduate program, Trent University, Peterborough, Canada; Department of Chemistry, Trent University, Peterborough, Canada.
Ecotoxicol Environ Saf. 2025 Jan 15;290:117561. doi: 10.1016/j.ecoenv.2024.117561. Epub 2024 Dec 19.
The global extraction and use of rare earth elements (REEs) continue to rise as they are implemented in technologies that improve human and environmental livelihoods. However, the general understanding of transfer processes and fates of REEs in aquatic systems remains limited. Here, we aim to determine the REEs' main exposure pathways, e.g., particulate fraction, diet, or dissolved (ionic) fractions, to three benthic and three pelagic organisms. They were maintained under laboratory conditions and exposed to natural river water, with or without a sand substrate and an adapted diet. The organisms include northern clearwater crayfish (Faxonius propinquus), chinese mystery snail (Cipangopaludina chinensis), black sandshell mussel (Ligumia recta), striped shiner minnows (Luxilus chrysocephalus), Daphnia magna, and Euglena gracilis. The combined results of REE concentrations, fractionations, and anomalies highlighted that pelagic organisms are characterized by heavy REEs enrichment indicating they mainly uptake REEs in the dissolved form with high bioaccumulation potential, i.e., bioconcentration (BCF) > 1 and diet accumulation factors (DAF) < 1. Pelagic organisms exhibited relatively low REE concentrations in their tissues ([La] ranging from 4.6 to 57.7 µg kg in minnows, 18.4 µg kg in whole body D. magna, and 32.2 µg kg in E. gracilis). On the other hand, snails and mussels were enriched in light REEs showing they mainly uptake REEs through their respective diets and particulate sand substrate. Relative to pelagic organisms, mussels and snails have higher DAFs (161.2 and 18.6, respectively) and REE levels in their soft tissues ([La] of 5700 µg kg and 650 µg kg , respectively), but DAF for crayfish remains < 1. In summary, under environmental-relevant conditions, the six aquatic organisms has the potential to accumulate REEs through various uptake pathways. Nevertheless, our results confirming preferential uptake pathways of the six organisms can help select appropriate species in future studies to monitor REE exposure from vaious fractions: dissolved, particulate forms or in the food webs (i.e., diet).
随着稀土元素(REEs)被应用于改善人类生活和环境的技术中,其全球开采量和使用量持续上升。然而,人们对REEs在水生系统中的迁移过程和归宿的总体了解仍然有限。在此,我们旨在确定REEs对三种底栖生物和三种浮游生物的主要暴露途径,例如颗粒态、饮食或溶解(离子)态。这些生物被置于实验室条件下,暴露于天然河水中,有或没有沙质底物和适宜的食物。这些生物包括北方清水小龙虾(Faxonius propinquus)、中华圆田螺(Cipangopaludina chinensis)、黑线蚌(Ligumia recta)、条纹小银汉鱼(Luxilus chrysocephalus)、大型溞(Daphnia magna)和纤细裸藻(Euglena gracilis)。REEs浓度、分馏和异常的综合结果表明,浮游生物的特征是重REEs富集,这表明它们主要以具有高生物累积潜力的溶解形式吸收REEs,即生物浓缩系数(BCF)>1且饮食累积系数(DAF)<1。浮游生物组织中的REEs浓度相对较低(小银汉鱼体内的[La]范围为4.6至57.7µg/kg,大型溞全身为18.4µg/kg,纤细裸藻为32.2µg/kg)。另一方面,蜗牛和贻贝富含轻REEs,这表明它们主要通过各自的饮食和颗粒状沙质底物吸收REEs。相对于浮游生物,贻贝和蜗牛的DAF较高(分别为161.2和18.6),其软组织中的REE水平也较高([La]分别为5700µg/kg和650µg/kg),但小龙虾的DAF仍<1。总之,在与环境相关的条件下,这六种水生生物有可能通过各种吸收途径积累REEs。然而,我们的结果证实了这六种生物的优先吸收途径,这有助于在未来的研究中选择合适的物种来监测来自各种组分(溶解态、颗粒态或食物网中的饮食态)的REE暴露。