Lafrenière Marie-Christine, Lapierre Jean-François, Ponton Dominic E, Cabana Gilbert, Winkler Gesche, Lefranc Marie, Amyot Marc
Département de sciences biologiques, Université de Montréal (UdeM), Montréal, Québec, Canada, H2V 0B3; Groupe de recherche interuniversitaire en limnologie (GRIL), Montréal, Québec, Canada.
Groupe de recherche interuniversitaire en limnologie (GRIL), Montréal, Québec, Canada; Département des Sciences de l'Environnement, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada, G8Z 4M3.
Environ Pollut. 2025 Feb 15;367:125558. doi: 10.1016/j.envpol.2024.125558. Epub 2024 Dec 18.
The mobilization of rare earth elements (REEs) in aquatic ecosystems is expected to rise significantly due to intensified exploitation, erosion, and climate change. As a result, more attention has been brought to study their environmental fate. However, our ability to assess contamination risks in freshwater organisms remains limited due to scarce data on the composition and accumulation of REEs. Understanding how organisms bioaccumulate REEs requires knowledge of their environmental conditions, exposure pathways, and ecological characteristics-areas few studies have explored. In this study, we examined the fate of REEs across abiotic (water, suspended sediments, and sediments) and biotic (invertebrates and fishes) compartments in the St. Lawrence River (Canada), identifying the main drivers of their accumulation and relative composition. The results were consistent with REE biodilution along the food chain, with concentrations greater in suspended (REEs = 76.1-241.4 μg g) and bulk sediments (REEs = 4.2-204.2 μg g). Higher concentrations were found in fine-grained sediments, with a relative enrichment in middle REEs, likely due to REE adsorption onto Fe- or Mn-bearing minerals. Nonpredatory invertebrates ingesting suspended sediments, such as Ephemeroptera and Diptera larvae, exhibited higher concentrations of REEs than both filter-feeding species (i.e., mussels, polychaetes) and fish. Additionally, some amphipods displayed anomalous concentrations of gadolinium (Gd/Gd∗ = 5.7, 2.6, and 2.0), possibly originating from anthropogenic activities near Montreal Island. While fish bioaccumulated only light REEs in their liver, multiple regression models revealed how their length and the concentration of REEs in surrounding water-in dissolved form or as free ions-influenced their concentrations. Finally, benthivorous species like Moxostoma spp. and Ictalurus punctatus accumulated more REEs compared to piscivorous Sander spp., reflecting differences in feeding behavior and trophic level. Overall, these findings provide insights into how REE concentrations and compositions varied among organisms, likely due to differences in environmental conditions and ecological characteristics.
由于开采活动加剧、侵蚀以及气候变化,水生生态系统中稀土元素(REEs)的活化预计将显著增加。因此,对其环境归宿的研究受到了更多关注。然而,由于稀土元素组成和积累的数据稀缺,我们评估淡水生物污染风险的能力仍然有限。了解生物如何生物累积稀土元素需要了解其环境条件、暴露途径和生态特征,而这些领域鲜有研究涉及。在本研究中,我们调查了加拿大圣劳伦斯河非生物(水、悬浮沉积物和沉积物)和生物(无脊椎动物和鱼类)部分中稀土元素的归宿,确定了其积累的主要驱动因素和相对组成。结果与食物链中稀土元素的生物稀释一致,悬浮沉积物(稀土元素含量为76.1 - 241.4μg/g)和块状沉积物(稀土元素含量为4.2 - 204.2μg/g)中的浓度更高。在细颗粒沉积物中发现了更高的浓度,中间稀土元素相对富集,这可能是由于稀土元素吸附在含铁或锰的矿物上。摄食悬浮沉积物的非捕食性无脊椎动物,如蜉蝣目和双翅目幼虫,其稀土元素浓度高于滤食性物种(即贻贝、多毛类)和鱼类。此外,一些双足类动物显示出异常的钆浓度(Gd/Gd∗ = 5.7、2.6和2.0),可能源于蒙特利尔岛附近的人为活动。虽然鱼类在肝脏中仅生物累积轻稀土元素,但多元回归模型揭示了它们的体长以及周围水中溶解形式或游离离子形式的稀土元素浓度如何影响其体内浓度。最后,与食鱼性的桑德氏属相比,底栖性物种如大口胭脂鱼属和斑点叉尾鮰积累了更多的稀土元素,这反映了摄食行为和营养级的差异。总体而言,这些发现揭示了稀土元素浓度和组成在生物之间如何变化,这可能是由于环境条件和生态特征的差异所致。