Suppr超能文献

氧化亚铁硫杆菌对微藻造成的分子破坏:酸性矿山排水中的光合作用、氧化应激和能量代谢

Molecular disruptions in microalgae caused by Acidithiobacillus ferrooxidans: Photosynthesis, oxidative stress, and energy metabolism in acid mine drainage.

作者信息

Wang Meichen, Yue Zhengbo, Deng Rui, She Zhixiang, Zhang Lu, Yang Fan, Wang Jin

机构信息

School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.

School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.

出版信息

Water Res. 2025 Mar 15;272:122974. doi: 10.1016/j.watres.2024.122974. Epub 2024 Dec 16.

Abstract

Microalgae are recognized for their potential in the bioremediation of acid mine drainage (AMD), despite the challenges posed by AMD's low pH, high heavy metal content, and oligotrophic conditions. However, the impact of AMD chemoautotrophic microorganisms on microalgal growth and remediation efforts within AMD has been largely overlooked. This study aims to elucidate the effects the chemoautotrophic microorganism, Acidithiobacillus ferrooxidans, on the growth activity and metabolism of acid-tolerant microalgae, and to explore the molecular mechanisms of microalgal response. Our findings reveal that the presence of A. ferrooxidans inhibits the growth and alkaline production of Parachlorella sp. MP1, resulting in a 90.86 % reduction in biomass. Physiological, biochemical, and transcriptomic studies, indicate that oxidative stress, photosynthesis, and energy metabolism are the metabolic processes most affected by A. ferrooxidans. Specifically, A. ferrooxidans introduces an increased production of reactive oxygen species (ROS) in Parachlorella sp. MP1, leading to an upregulation of genes and enzymes associated with peroxisome activity and intensifying oxidative stress within the cells. Downregulation of photosynthesis-related genes disrupts the electron transport chain, inhibiting photosynthesis. Furthermore, alterations in the gene expression of pyruvate and acetyl-CoA metabolic pathways result in energetic pathway disruption. These insights contribute to a better understanding of how A. ferrooxidans influence the growth metabolism of acid-tolerant microalgae in AMD environments and inform the optimization of microalgal application strategies in AMD bioremediation engineering.

摘要

微藻因其在酸性矿山排水(AMD)生物修复中的潜力而受到认可,尽管AMD的低pH值、高重金属含量和贫营养条件带来了挑战。然而,AMD化学自养微生物对微藻生长以及AMD内修复工作的影响在很大程度上被忽视了。本研究旨在阐明化学自养微生物氧化亚铁硫杆菌对耐酸微藻生长活性和代谢的影响,并探索微藻响应的分子机制。我们的研究结果表明,氧化亚铁硫杆菌的存在抑制了小球藻属MP1的生长和碱性物质产生,导致生物量减少90.86%。生理、生化和转录组学研究表明,氧化应激、光合作用和能量代谢是受氧化亚铁硫杆菌影响最大的代谢过程。具体而言,氧化亚铁硫杆菌使小球藻属MP1中活性氧(ROS)的产生增加,导致与过氧化物酶体活性相关的基因和酶上调,并加剧细胞内的氧化应激。光合作用相关基因的下调破坏了电子传递链,抑制了光合作用。此外,丙酮酸和乙酰辅酶A代谢途径的基因表达改变导致能量途径紊乱。这些见解有助于更好地理解氧化亚铁硫杆菌如何影响AMD环境中耐酸微藻的生长代谢,并为AMD生物修复工程中微藻应用策略的优化提供依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验