Lira André L, Taskin Berk, Puy Cristina, Keshari Ravi S, Silasi Robert, Pang Jiaqing, Aslan Joseph E, Shatzel Joseph J, Lorentz Christina U, Tucker Erik I, Schmaier Alvin H, Gailani David, Lupu Florea, McCarty Owen J T
Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.
Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.
J Biol Chem. 2025 Jan;301(1):108110. doi: 10.1016/j.jbc.2024.108110. Epub 2024 Dec 18.
Lipopolysaccharide (LPS) is the primary pathogenic factor in Gram-negative sepsis. While the presence of LPS in the bloodstream during infection is associated with disseminated intravascular coagulation, the mechanistic link between LPS and blood coagulation activation remains ill-defined. The contact pathway of coagulation-a series of biochemical reactions that initiates blood clotting when plasma factors XII (FXII) and XI (FXI), prekallikrein (PK), and high molecular weight kininogen interact with anionic surfaces-has been shown to be activated in Gram-negative septic patients. In this study, using an in vivo baboon model of Gram-negative Escherichia coli sepsis, we observed activation of the contact pathway including FXII, FXI, and PK. We examined whether E.coli LPS molecules could bind and activate contact pathway members by quantifying the interaction and activation of either FXII, FXI, or PK with each of the three chemotypes of LPS: O111:B4, O26:B6, or Rd2. The LPS chemotypes exhibited distinct physicochemical properties as aggregates and formed complexes with FXII, FXI, and PK. The LPS chemotype O26:B6 uniquely promoted the autoactivation of FXII to FXIIa and, in complex with FXIIa, promoted the cleavage of FXI and PK to generate FXIa and plasma kallikrein, respectively. Furthermore, in complex with the active forms of FXI or PK, LPS chemotypes were able to regulate the catalytic activity of FXIa and plasma kallikrein, respectively, despite the inability to promote the autoactivation of either zymogen. These data suggest that the procoagulant phenotype of E.coli is influenced by bacterial strain and the physicochemical properties of the LPS chemotypes.
脂多糖(LPS)是革兰氏阴性菌败血症的主要致病因素。虽然感染期间血液中LPS的存在与弥散性血管内凝血有关,但LPS与凝血激活之间的机制联系仍不明确。凝血的接触途径——当血浆因子XII(FXII)和XI(FXI)、前激肽释放酶(PK)和高分子量激肽原与阴离子表面相互作用时引发血液凝固的一系列生化反应——已被证明在革兰氏阴性菌败血症患者中被激活。在本研究中,我们使用革兰氏阴性大肠杆菌败血症的体内狒狒模型,观察到包括FXII、FXI和PK在内的接触途径的激活。我们通过量化FXII、FXI或PK与三种LPS化学型(O111:B4、O26:B6或Rd2)中每种化学型的相互作用和激活情况,研究了大肠杆菌LPS分子是否能结合并激活接触途径成员。LPS化学型作为聚集体表现出不同的物理化学性质,并与FXII、FXI和PK形成复合物。LPS化学型O26:B6独特地促进FXII自激活为FXIIa,并且与FXIIa形成复合物时,分别促进FXI和PK的裂解以产生FXIa和血浆激肽释放酶。此外,尽管无法促进任何一种酶原的自激活,但与FXI或PK的活性形式形成复合物时,LPS化学型能够分别调节FXIa和血浆激肽释放酶的催化活性。这些数据表明,大肠杆菌的促凝表型受细菌菌株和LPS化学型的物理化学性质影响。