Lin Yuming, Xiang Nian, Peng Min, Qin Zuzeng, Su Tongming, Ji Hongbing, Xie Xinling
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China.
School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, PR China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
Int J Biol Macromol. 2025 Feb;290:138964. doi: 10.1016/j.ijbiomac.2024.138964. Epub 2024 Dec 18.
Conductive hydrogels are utilized in flexible sensors due to their high-water content, excellent elasticity, and shape controllability. However, the sharp increase in resistance of this material under enormous strain leads to instability in the sensing process. This study presents a straightforward method for creating a stable, recyclable, hybrid ionic-electronic conductive (HIEC) hydrogel via a simple one-pot strategy using polyvinyl alcohol (PVA), bagasse cellulose nanofibrils (CNF), and graphene(G) with sodium dodecylbenzene sulfonate (SDBS). The SDBS/G hemimicelles are formed through hydrophobic and π-π stacking interactions between SDBS and G, enhancing the dispersibility of G. Then SDBS/G hemimicelles were integrated into a non-covalent cross-linking network from CNF and PVA, which ensures recyclability and stability. The CNF-PVA-Graphene (CPG) hydrogel exhibited high and stable sensing sensitivity (average gauge factor up to 1.99), high conductivity (0.36 S/m), low graphene concentration (0.16 wt%), low detection limit (1 %), and fast response time (0.17 s). The sensor can detect large (wrist and knee) and small (pulse and laryngeal prominence) body movements. After recycling, the hydrogel sensors maintained high conductivity sensitivity (average gauge factor up to 1.01) and good tensile properties (360 % strain). This study introduces a new approach of hybrid conductive biomass-based hydrogel sensors for precisely monitoring human movements.
由于具有高含水量、出色的弹性和形状可控性,导电水凝胶被应用于柔性传感器。然而,这种材料在巨大应变下电阻急剧增加,导致传感过程不稳定。本研究提出了一种简单的方法,通过使用聚乙烯醇(PVA)、甘蔗渣纤维素纳米纤维(CNF)和石墨烯(G)与十二烷基苯磺酸钠(SDBS)的简单一锅法策略,制备出一种稳定、可回收的混合离子 - 电子导电(HIEC)水凝胶。SDBS与G之间通过疏水和π - π堆积相互作用形成SDBS/G半胶束,增强了G的分散性。然后将SDBS/G半胶束整合到由CNF和PVA组成的非共价交联网络中,这确保了可回收性和稳定性。CNF - PVA - 石墨烯(CPG)水凝胶表现出高且稳定的传感灵敏度(平均应变片系数高达1.99)、高电导率(0.36 S/m)、低石墨烯浓度(0.16 wt%)、低检测限(1%)和快速响应时间(0.17 s)。该传感器能够检测大的(手腕和膝盖)以及小的(脉搏和喉结)身体运动。回收后,水凝胶传感器保持了高导电灵敏度(平均应变片系数高达1.01)和良好的拉伸性能(360%应变)。本研究引入了一种基于混合导电生物质的水凝胶传感器的新方法,用于精确监测人体运动。