Suppr超能文献

在响应面法中,采用机器学习替代多项式回归预测纺织废水处理中的脱色效率。

Alternative assessment of machine learning to polynomial regression in response surface methodology for predicting decolorization efficiency in textile wastewater treatment.

作者信息

Kang Jin-Kyu, Lee Youn-Jun, Son Chae-Young, Park Seong-Jik, Lee Chang-Gu

机构信息

Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do, 53064, Republic of Korea.

Department of Energy Systems Research, Ajou University, Suwon, 16499, Republic of Korea.

出版信息

Chemosphere. 2025 Feb;370:143996. doi: 10.1016/j.chemosphere.2024.143996. Epub 2024 Dec 20.

Abstract

This study investigated the potential of machine learning (ML) as a substitute for polynomial regression in conventional response surface methodology (RSM) for decolorizing textile wastewater via a UV/HO process. While polynomial regression offers limited adaptability, ML models provide superior flexibility in capturing nonlinear responses but are prone to overfitting, particularly with constrained RSM datasets. In this study, we evaluated decision tree (DT), random forest (RF), multilayer perceptron (MLP), and extreme gradient boosting (XGBoost) models with respect to a quadratic regression model. Our observations indicated that the ML models achieved higher R values, demonstrating better adaptability. However, when provided with additional data, the polynomial regression displayed a moderate predictability, whereas MLP and XGBoost exhibited indications of overfitting, while DT and RF remained robust. Both ANalysis Of VAriance (ANOVA) and SHapley Additive exPlanations (SHAP) analyses consistently emphasized the significance of operational factors (HO concentration, reaction time, UV light intensity) in decolorization. The findings underscore the need for cautious validation when substituting ML models in RSM and highlight the complementary value of ML (particularly SHAP analysis) alongside conventional ANOVA for analyzing factor significance. This study offered significant insights into replacing polynomial regression with ML models in RSM.

摘要

本研究调查了机器学习(ML)在传统响应面法(RSM)中替代多项式回归的潜力,该方法用于通过UV/HO工艺对纺织废水进行脱色。虽然多项式回归的适应性有限,但ML模型在捕捉非线性响应方面具有更高的灵活性,但容易出现过拟合,特别是对于受限的RSM数据集。在本研究中,我们针对二次回归模型评估了决策树(DT)、随机森林(RF)、多层感知器(MLP)和极端梯度提升(XGBoost)模型。我们的观察结果表明,ML模型获得了更高的R值,显示出更好的适应性。然而,当提供额外数据时,多项式回归显示出适度的可预测性,而MLP和XGBoost表现出过拟合迹象,而DT和RF则保持稳健。方差分析(ANOVA)和Shapley值加法解释(SHAP)分析均一致强调了操作因素(HO浓度、反应时间、紫外线光强度)在脱色中的重要性。研究结果强调了在RSM中用ML模型替代时进行谨慎验证的必要性,并突出了ML(特别是SHAP分析)与传统ANOVA在分析因素重要性方面的互补价值。本研究为在RSM中用ML模型替代多项式回归提供了重要见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验