Suppr超能文献

基于可解释人工智能的六自由度拟人机器人优化逆运动学建模与关节角度预测

Optimized inverse kinematics modeling and joint angle prediction for six-degree-of-freedom anthropomorphic robots with Explainable AI.

作者信息

Joshi Rakesh Chandra, Rai Jaynendra Kumar, Burget Radim, Dutta Malay Kishore

机构信息

Amity Centre for Artificial Intelligence, Amity University, Noida, UP, India.

Amity University, Noida, UP, India.

出版信息

ISA Trans. 2025 Feb;157:340-356. doi: 10.1016/j.isatra.2024.12.008. Epub 2024 Dec 10.

Abstract

Inverse kinematics, crucial in robotics, involves computing joint configurations to achieve specific end-effector positions and orientations. This task is particularly complex for six-degree-of-freedom (six-DoF) anthropomorphic robots due to complicated mathematical equations, nonlinear behaviours, multiple valid solutions, physical constraints, non-generalizability and computational demands. The primary contribution of this work is to address the complex inverse kinematics problem for six-DoF anthropomorphic robots through the systematic exploration of AI models. This study involves rigorous evaluation and Bayesian optimization for hyperparameter tuning to identify the optimal regressor, balancing both accuracy and computational efficiency. Utilizing five-fold cross-validation on a publicly available dataset, the selected model demonstrates exceptional performance in predicting six joint angles for end effector configuration, yielding an average mean square error of 1.934 × 10 to 3.522 × 10. Its computational efficiency, with a prediction time of approximately 1.25 ms per sample, makes it a practical choice. Additionally, the study employs Explainable AI, using SHAP (SHapley Additive exPlanations) analysis to gain an understanding of feature importance. This analysis not only enhances model interpretability but also reaffirms the efficacy in this challenging multi-input multi-output predictive task. This research advances state-of-the-art models and neural networks by prioritizing computational efficiency alongside accuracy-a critical yet often overlooked factor. Pioneering a significant advancement in anthropomorphic robot kinematics, it balances accuracy and efficiency, offering practical robotic automation solutions.

摘要

逆运动学在机器人技术中至关重要,它涉及计算关节配置以实现特定的末端执行器位置和方向。对于六自由度拟人机器人来说,由于数学方程复杂、行为非线性、存在多个有效解、物理约束、缺乏通用性以及计算需求等原因,这项任务特别复杂。这项工作的主要贡献在于通过对人工智能模型的系统探索,解决六自由度拟人机器人复杂的逆运动学问题。本研究涉及严格评估和用于超参数调整的贝叶斯优化,以确定最优回归器,兼顾准确性和计算效率。在一个公开可用的数据集上使用五折交叉验证,所选模型在预测末端执行器配置的六个关节角度方面表现出卓越性能,平均均方误差在1.934×10至3.522×10之间。其计算效率为每个样本约1.25毫秒的预测时间,使其成为一个实用的选择。此外,该研究采用了可解释人工智能,使用SHAP(Shapley值加法解释)分析来了解特征重要性。这种分析不仅增强了模型的可解释性,还再次确认了在这个具有挑战性的多输入多输出预测任务中的有效性。这项研究通过将计算效率与准确性(一个关键但经常被忽视的因素)置于优先地位,推进了当前的先进模型和神经网络。在拟人机器人运动学方面开创了重大进展,它平衡了准确性和效率,提供了实用的机器人自动化解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验