Suppr超能文献

在存在纳米塑料的稻田土壤中,甲烷产量增加与群落向甲烷杆菌属转变有关。

Increased methane production associated with community shifts towards Methanocella in paddy soils with the presence of nanoplastics.

作者信息

He Zhibin, Hou Yarong, Li Ying, Bei Qicheng, Li Xin, Zhu Yong-Guan, Liesack Werner, Rillig Matthias C, Peng Jingjing

机构信息

State Key Laboratory of Nutrient Use and Management, Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.

Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089-0371, USA.

出版信息

Microbiome. 2024 Dec 20;12(1):259. doi: 10.1186/s40168-024-01974-y.

Abstract

BACKGROUND

Planetary plastic pollution poses a major threat to ecosystems and human health in the Anthropocene, yet its impact on biogeochemical cycling remains poorly understood. Waterlogged rice paddies are globally important sources of CH. Given the widespread use of plastic mulching in soils, it is urgent to unravel whether low-density polyethylene (LDPE) will affect the methanogenic community in flooded paddy soils. Here, we employed a combination of process measurements, short-chain and long-chain fatty acid (SCFAs and LCFAs) profiling, Fourier-transform ion cyclotron resonance mass spectrometry, quantitative PCR, metagenomics, and mRNA profiling to investigate the impact of LDPE nanoplastics (NPs) on dissolved organic carbon (DOC) and CH production in both black and red paddy soils under anoxic incubation over a 160-day period.

RESULTS

Despite significant differences in microbiome composition between the two soil types, both exhibited similar results to NPs exposure. NPs induced a change in DOC content and CH production up to 1.8-fold and 10.1-fold, respectively. The proportion of labile dissolved organic matter decreased, while its recalcitrance increased. Genes associated with the degradation of complex carbohydrates and aromatic carbon were significantly enriched. The elevated CH production was significantly correlated to increases in both the PCR-quantified mcrA gene copy numbers and the metagenomic methanogen-to-bacteria abundance ratio. Notably, the latter was linked to an enrichment of the hydrogenotrophic methanogenesis pathway. Among 391 metagenome-assembled genomes (MAGs), the abundance of several Syntrophomonas and Methanocella MAGs increased concomitantly, suggesting that the NPs treatments stimulated the syntrophic oxidation of fatty acids. mRNA profiling further identified Methanosarcinaceae and Methanocellaceae to be the key players in the NPs-induced CH production.

CONCLUSIONS

The specific enrichment of Syntrophomonas and Methanocella indicates that LDPE NPs stimulate the syntrophic oxidation of LCFAs and SCFAs, with Methanocella acting as the hydrogenotrophic methanogen partner. Our findings enhance the understanding of how LDPE NPs affect the methanogenic community in waterlogged paddy soils. Given the importance of this ecosystem, our results are crucial for elucidating the mechanisms that govern carbon fluxes, which are highly relevant to global climate change.

摘要

背景

在人类世,全球塑料污染对生态系统和人类健康构成重大威胁,但其对生物地球化学循环的影响仍知之甚少。淹水稻田是全球重要的甲烷排放源。鉴于塑料薄膜在土壤中的广泛使用,迫切需要弄清楚低密度聚乙烯(LDPE)是否会影响淹水稻田土壤中的产甲烷群落。在此,我们采用过程测量、短链和长链脂肪酸(SCFAs和LCFAs)分析、傅里叶变换离子回旋共振质谱、定量PCR、宏基因组学和mRNA分析等方法,研究了LDPE纳米塑料(NPs)在160天缺氧培养期间对黑土和红壤稻田土壤中溶解有机碳(DOC)和甲烷产生的影响。

结果

尽管两种土壤类型的微生物群落组成存在显著差异,但两者对NPs暴露的反应相似。NPs分别使DOC含量和甲烷产量变化高达1.8倍和10.1倍。易分解的溶解有机物比例降低,而其难降解性增加。与复杂碳水化合物和芳香碳降解相关的基因显著富集。甲烷产量的增加与PCR定量的mcrA基因拷贝数以及宏基因组产甲烷菌与细菌丰度比的增加显著相关。值得注意的是,后者与氢营养型甲烷生成途径的富集有关。在391个宏基因组组装基因组(MAGs)中,几种互营单胞菌属和甲烷袋状菌属MAGs的丰度同时增加,这表明NPs处理刺激了脂肪酸的互营氧化。mRNA分析进一步确定甲烷八叠球菌科和甲烷袋状菌科是NPs诱导甲烷产生的关键参与者。

结论

互营单胞菌属和甲烷袋状菌属的特异性富集表明,LDPE NPs刺激了长链脂肪酸和短链脂肪酸的互营氧化,甲烷袋状菌属作为氢营养型产甲烷菌伙伴。我们的研究结果增进了对LDPE NPs如何影响淹水稻田土壤中产甲烷群落的理解。鉴于这个生态系统的重要性,我们的结果对于阐明控制碳通量的机制至关重要,而碳通量与全球气候变化高度相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b155/11660960/9b913040eb4d/40168_2024_1974_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验