Kuo Ho-Chang, Chen Shih-Hsin, Chen I-Fei, Cheng Wen-Ing, Liu Shih-Feng, Guo Mindy Ming-Huey, Lin Yu-Chi, Chen Yi-Hui
Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
College of Medicine, Chang Gung University, Taoyuan, Taiwan.
Pediatr Rheumatol Online J. 2024 Dec 21;22(1):108. doi: 10.1186/s12969-024-01040-9.
This study aims to develop Z-Score models to normalize measurements of three coronary arteries and enhance the diagnosis of Kawasaki disease (KD) in children from newborns to 10 years old. Developing a reliable Z-Score model is challenging, as some existing models fail the normality test. Overcoming these challenges is crucial for improving KD diagnosis.
Detailed measurements of the left main coronary artery (LCA), left anterior descending coronary artery (LAD), and right coronary artery (RCA) were collected, along with patient demographics such as age, height, weight, and body surface area (BSA). Several Z-Score models, named the Kuo Z-Score models, were proposed, with separate designs for different coronary arteries and different age groups, resulting in multiple Z-Score models. The Z-Score model for the RCA employs the Box-Cox method for data transformation. Finally, we tested various age group combinations, selecting models that passed the Anderson-Darling normality test and had higher R-square values for robustness and best data fit.
The study included 1180 participants free from coronary or heart diseases. The Kuo Z-Score models were optimized for LCA, LAD, and RCA across the five age groups 0-6 years, 6-7 years, 7-8 years, 8-9 years, and 9-10 years. Only the normality test for the RCA in the 7-8 year age group failed. The proposed model fitted to the normality assumption outperforming the other models.
The Kuo Z-Score models, applicable across a broad age range, provides robust identification of coronary artery dilatation and aneurysm in KD. The models' capability to normalize diverse data sets marks a significant advancement in KD diagnostic sensitivity, aiding in better clinical decision-making and potentially improving patient outcomes.
本研究旨在开发Z评分模型,以标准化三条冠状动脉的测量值,并加强对新生儿至10岁儿童川崎病(KD)的诊断。开发一个可靠的Z评分模型具有挑战性,因为一些现有模型未通过正态性检验。克服这些挑战对于改善KD诊断至关重要。
收集了左冠状动脉主干(LCA)、左冠状动脉前降支(LAD)和右冠状动脉(RCA)的详细测量值,以及患者的人口统计学数据,如年龄、身高、体重和体表面积(BSA)。提出了几个Z评分模型,称为郭氏Z评分模型,针对不同冠状动脉和不同年龄组进行了单独设计,从而产生了多个Z评分模型。RCA的Z评分模型采用Box-Cox方法进行数据转换。最后,我们测试了各种年龄组组合,选择通过安德森-达林正态性检验且具有较高R平方值的模型,以确保稳健性和最佳数据拟合。
该研究纳入了1180名无冠状动脉或心脏病的参与者。郭氏Z评分模型针对0至6岁、6至7岁、7至8岁、8至9岁和9至10岁这五个年龄组中的LCA、LAD和RCA进行了优化。只有7至8岁年龄组RCA的正态性检验未通过。所提出的符合正态性假设的模型优于其他模型。
郭氏Z评分模型适用于广泛的年龄范围,能够可靠地识别KD中的冠状动脉扩张和动脉瘤。该模型对不同数据集进行标准化的能力标志着KD诊断敏感性的显著提高,有助于更好地进行临床决策,并可能改善患者预后。