Suppr超能文献

用于鉴别神经源性和非神经源性周围神经肿瘤的新型MRI征象:对比增强磁共振神经造影的见解

Novel MRI signs for differentiating neurogenic and non-neurogenic peripheral nerve Tumors: Insights from Contrast-Enhanced magnetic resonance neurography.

作者信息

Wu Wenjun, Ding Yuhong, Su Yu, Wang Youzhi, Liu Tingting, Zhang Zhiqing, Liu Dingxi, Li Chungao, Zheng Chuansheng, Wang Lixia

机构信息

Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.

Department of Radiology, Yijishan Hospital, Wannan Medical College, No.2 Zheshan West Road, Wuhu 241001, Anhui, China.

出版信息

Eur J Radiol. 2025 Feb;183:111894. doi: 10.1016/j.ejrad.2024.111894. Epub 2024 Dec 18.

Abstract

OBJECTS

To investigate the specific manifestations of neurogenic and non-neurogenic tumors involving peripheral nerves on contrast-enhanced magnetic resonance neurography (CE-MRN) and explore the potential of CE-MRN in aiding differential diagnosis.

MATERIALS AND METHODS

Twenty-nine patients with neurogenic tumors and 23 with non-neurogenic tumors involving peripheral nerves were enrolled in this study. Both routine MRI and CE-MRN scanning were performed on all subjects. The location, pattern of involvement, classical MRI signs, and novel CE-MRN signs of nerve involvement were evaluated and compared between the two groups. The novel CE-MRN signs included "Enhanced target sign", "Nerve effacing sign", "Nerve wrapping sign", "Nerve compressing sign", "Nerve tail sign", and morphological changes of nerves. Diagnostic confidence in identifying nerve involvement and lesion conspicuity were assessed and compared between routine MRI and CE-MRN.

RESULTS

The majority of neurogenic tumors were schwannoma (79.3 %) and involved a single nerve (75.9 %), whereas the majority of non-neurogenic tumors were malignant tumors (78.3 %) and involved multiple nerves (78.3 %) (P < 0.001). In terms of classical MRI signs, neurogenic tumors exhibited a significantly higher incidence of the "Tail sign" (75.9 % vs 13 %), "Dumbbell sign" (31 % vs 4.3 %), "Target sign" (51.7 % vs 8.7 %), and "Split fat sign" (55.2 % vs 4.3 %), while showing a lower incidence of the "Effacement of fat plane" (3.4 % vs 60.9 %) compared to non-neurogenic tumors (all p < 0.05). Regarding novel CE-MRN signs, neurogenic tumors demonstrated a significantly higher incidence of the "Enhanced target sign" (65.6 % vs 13 %) and the "Nerve tail sign" (100 % vs 13 %), while exhibiting a lower incidence of the "Nerve effacing sign" (0 % vs 52.2 %) and the "Nerve wrapping sign" (0 % vs 17.4 %) compared to non-neurogenic tumors (all p < 0.05). CE-MRN yielded significantly higher diagnostic confidence scores (2.87 ± 0.35 vs 1.75 ± 0.84), but lower lesion conspicuity scores (2.35 ± 0.71 vs 2.92 ± 0.27) compared to routine MRI (all P < 0.001).

CONCLUSION

CE-MRN is a valuable imaging modality for the identification of tumor-related peripheral nerve involvement, as it offers supplementary indicators and enhances diagnostic confidence.

摘要

目的

探讨神经源性和非神经源性周围神经肿瘤在对比增强磁共振神经成像(CE-MRN)上的具体表现,并探索CE-MRN在辅助鉴别诊断中的潜力。

材料与方法

本研究纳入了29例患有神经源性肿瘤和23例患有非神经源性周围神经肿瘤的患者。所有受试者均接受了常规MRI和CE-MRN扫描。评估并比较了两组患者神经受累的部位、累及方式、经典MRI征象以及CE-MRN新征象。CE-MRN新征象包括“强化靶征”“神经消失征”“神经包绕征”“神经压迫征”“神经尾征”以及神经的形态变化。评估并比较了常规MRI和CE-MRN在识别神经受累方面的诊断信心以及病变的清晰度。

结果

大多数神经源性肿瘤为神经鞘瘤(79.3%),且累及单条神经(75.9%),而大多数非神经源性肿瘤为恶性肿瘤(78.3%),且累及多条神经(78.3%)(P<0.001)。在经典MRI征象方面,神经源性肿瘤的“尾征”(75.9%对13%)、“哑铃征”(31%对4.3%)、“靶征”(51.7%对8.7%)和“脂肪劈裂征”(55.2%对4.3%)的发生率显著更高,而与非神经源性肿瘤相比,“脂肪平面消失”的发生率较低(3.4%对60.9%)(所有p<0.05)。关于CE-MRN新征象,神经源性肿瘤的“强化靶征”(65.6%对13%)和“神经尾征”(100%对13%)的发生率显著更高,而与非神经源性肿瘤相比,“神经消失征”(0%对52.2%)和“神经包绕征”(0%对17.4%)的发生率较低(所有p<0.05)。与常规MRI相比,CE-MRN产生的诊断信心评分显著更高(2.87±0.35对1.75±0.84),但病变清晰度评分较低(2.35±0.71对2.92±0.27)(所有P<0.001)。

结论

CE-MRN是一种用于识别肿瘤相关周围神经受累的有价值的成像方式,因为它提供了补充指标并提高了诊断信心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验