Xi Hongyan, Yang Xinyu, Guo Wenhao, Pang Huaipeng, Leng Xuning, Huang Xiaolei, Meng Fanlu
School of Materials Science and Engineering, Ocean University of China, Qingdao 266404, China.
Municipal Science and Technology Innovation Service Center, Rizhao 276800, China.
J Colloid Interface Sci. 2025 Apr;683(Pt 1):860-869. doi: 10.1016/j.jcis.2024.12.112. Epub 2024 Dec 16.
Amidst the escalating global energy crisis, the quest for efficient electrocatalysts for water splitting has become increasingly imperative. Herein, we develop a bifunctional electrocatalyst comprising RuNi alloy nanoparticles anchored on fluorine-doped NiMoO nanorods (RuNi-F-NiMoO), engineered for efficient hydrogen production from seawater and urea oxidation reactions. The strategic F doping effectively reduces the difference in work functions and modulates the electronic interactions between the RuNi alloy and the NiMoO substrate, enhancing electron transfer kinetics and significantly improving electrocatalytic activity and stability. Notably, the RuNi-F-NiMoO exhibits outstanding hydrogen evolution reaction performance in both alkaline freshwater (248 mV at 1 A cm) and alkaline seawater (277 mV at 1 A cm), enabling industrial-scale high-current-density hydrogen production and maintaining durability over 1,000 h at 100 mA cm in alkaline seawater. Furthermore, RuNi-F-NiMoO achieves a current density of 1 A cm at a low potential of 1.59 V during the urea oxidation reaction, and facilitates a complete urea total cracking system operating at 1.88 V at 1 A cm in alkaline seawater, thereby reducing energy consumption for hydrogen production. This work offers a promising avenue for the development of efficient electrocatalysts in seawater electrolysis and urea oxidation, potentially advancing sustainable energy technologies.
在全球能源危机不断升级的背景下,寻求用于水分解的高效电催化剂变得愈发迫切。在此,我们开发了一种双功能电催化剂,它由锚定在氟掺杂的NiMoO纳米棒上的RuNi合金纳米颗粒(RuNi-F-NiMoO)组成,旨在通过海水和尿素氧化反应高效制氢。战略性的氟掺杂有效降低了功函数差异,并调节了RuNi合金与NiMoO基底之间的电子相互作用,增强了电子转移动力学,显著提高了电催化活性和稳定性。值得注意的是,RuNi-F-NiMoO在碱性淡水(1 A cm²时为248 mV)和碱性海水中(1 A cm²时为277 mV)均表现出出色的析氢反应性能,能够实现工业规模的高电流密度制氢,并在碱性海水中100 mA cm²的电流密度下保持1000小时以上的耐久性。此外,RuNi-F-NiMoO在尿素氧化反应中于1.59 V的低电位下实现了1 A cm²的电流密度,并促进了在碱性海水中1 A cm²电流密度下于1.88 V运行的完整尿素全裂解系统,从而降低了制氢能耗。这项工作为海水电解和尿素氧化中高效电催化剂的开发提供了一条有前景的途径,有望推动可持续能源技术的发展。