Urahashi Mai, Fujimoto Tomokazu, Inoue-Mochita Miyuki, Inoue Toshihiro
Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
Exp Eye Res. 2025 Feb;251:110215. doi: 10.1016/j.exer.2024.110215. Epub 2024 Dec 20.
Intraocular pressure (IOP) is regulated through the balance of production and drainage of aqueous humor. The main route of aqueous-humor outflow comprises the trabecular meshwork (TM) and Schlemm's canal (SC). We reported that IL-6 trans-signaling can inhibit TGF-β signaling in TM cells and may affect regulation of IOP. However, the function of IL-6 trans-signaling in SC cells remains unclear. Therefore, we investigated the role of IL-6 trans-signaling in monkey SC cells. Simultaneous treatment with IL-6 and soluble IL-6 receptor (sIL-6R) significantly decreased the trans-endothelial electrical resistance (TER) of SC cells and reduced aqueous-humor outflow resistance. Moreover, activation of IL-6 trans-signaling significantly reduced expression of fibronectin, ZO-1 and claudin-5, and increased that of several matrix metalloproteinases. We also investigated the effect of IL-6 trans-signaling on TGF-β2-induced changes in SC cells. Simultaneous treatment with IL-6 and sIL-6R significantly suppressed the TGF-β2-induced increase in the TER of SC cells but did not affect the activity of the TGF-β2 signaling pathway. By contrast, the TGF-β2-induced increases in the expression of fibronectin and collagen type I were significantly decreased upon simultaneous treatment with IL-6 and sIL-6R. The results show that IL-6 trans-signaling suppressed TGF-β2-induced increase in outflow resistance.