Suppr超能文献

使用基于CT的成像生物标志物的人工智能模型预测慢性乙型肝炎患者的肝细胞癌。

AI model using CT-based imaging biomarkers to predict hepatocellular carcinoma in patients with chronic hepatitis B.

作者信息

Shin Hyunjae, Hur Moon Haeng, Song Byeong Geun, Park Soo Young, Kim Gi-Ae, Choi Gwanghyeon, Nam Joon Yeul, Kim Minseok Albert, Park Youngsu, Ko Yunmi, Park Jeayeon, Lee Han Ah, Chung Sung Won, Choi Na Ryung, Park Min Kyung, Lee Yun Bin, Sinn Dong Hyun, Kim Seung Up, Kim Hwi Young, Kim Jong-Min, Park Sang Joon, Lee Hyung-Chul, Lee Dong Ho, Chung Jin Wook, Kim Yoon Jun, Yoon Jung-Hwan, Lee Jeong-Hoon

机构信息

Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Gyeonggi-do, Korea.

Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea.

出版信息

J Hepatol. 2025 Jun;82(6):1080-1088. doi: 10.1016/j.jhep.2024.12.029. Epub 2024 Dec 20.

Abstract

BACKGROUND & AIMS: Various hepatocellular carcinoma (HCC) prediction models have been proposed for patients with chronic hepatitis B (CHB) using clinical variables. We aimed to develop an artificial intelligence (AI)-based HCC prediction model by incorporating imaging biomarkers derived from abdominal computed tomography (CT) images along with clinical variables.

METHODS

An AI prediction model employing a gradient-boosting machine algorithm was developed utilizing imaging biomarkers extracted by DeepFore, a deep learning-based CT auto-segmentation software. The derivation cohort (n = 5,585) was randomly divided into the training and internal validation sets at a 3:1 ratio. The external validation cohort included 2,883 patients. Six imaging biomarkers (i.e. abdominal visceral fat-total fat volume ratio, total fat-trunk volume ratio, spleen volume, liver volume, liver-spleen Hounsfield unit ratio, and muscle Hounsfield unit) and eight clinical variables were selected as the main variables of our model, PLAN-B-DF.

RESULTS

In the internal validation set (median follow-up duration = 7.4 years), PLAN-B-DF demonstrated an excellent predictive performance with a c-index of 0.91 and good calibration function (p = 0.78 by the Hosmer-Lemeshow test). In the external validation cohort (median follow-up duration = 4.6 years), PLAN-B-DF showed a significantly better discrimination function compared to previous models, including PLAN-B, PAGE-B, modified PAGE-B, and CU-HCC (c-index, 0.89 vs. 0.65-0.78; all p <0.001), and maintained a good calibration function (p = 0.42 by the Hosmer-Lemeshow test). When patients were classified into four groups according to the risk probability calculated by PLAN-B-DF, the 10-year cumulative HCC incidence was 0.0%, 0.4%, 16.0%, and 46.2% in the minimal-, low-, intermediate-, and high-risk groups, respectively.

CONCLUSION

This AI prediction model, integrating deep learning-based auto-segmentation of CT images, offers improved performance in predicting HCC risk among patients with CHB compared to previous models.

IMPACT AND IMPLICATIONS

The novel predictive model PLAN-B-DF, employing an automated computed tomography segmentation algorithm, significantly improves predictive accuracy and risk stratification for hepatocellular carcinoma in patients with chronic hepatitis B (CHB). Using a gradient-boosting algorithm and computed tomography metrics, such as visceral fat volume and myosteatosis, PLAN-B-DF outperforms previous models based solely on clinical and demographic data. This model not only shows a higher c-index compared to previous models, but also effectively classifies patients with CHB into different risk groups. This model uses machine learning to analyze the complex relationships among various risk factors contributing to hepatocellular carcinoma occurrence, thereby enabling more personalized surveillance for patients with CHB.

摘要

背景与目的

已提出多种使用临床变量对慢性乙型肝炎(CHB)患者进行肝细胞癌(HCC)预测的模型。我们旨在通过纳入源自腹部计算机断层扫描(CT)图像的影像生物标志物以及临床变量,开发一种基于人工智能(AI)的HCC预测模型。

方法

利用基于深度学习的CT自动分割软件DeepFore提取的影像生物标志物,开发了一种采用梯度提升机算法的AI预测模型。推导队列(n = 5585)以3:1的比例随机分为训练集和内部验证集。外部验证队列包括2883例患者。选择六个影像生物标志物(即腹部内脏脂肪与总脂肪体积比、总脂肪与躯干体积比、脾脏体积、肝脏体积、肝脾亨氏单位比和肌肉亨氏单位)和八个临床变量作为我们的PLAN - B - DF模型的主要变量。

结果

在内部验证集(中位随访时间 = 7.4年)中,PLAN - B - DF表现出出色的预测性能,c指数为0.91,校准功能良好(Hosmer - Lemeshow检验p = 0.78)。在外部验证队列(中位随访时间 = 4.6年)中,与之前的模型(包括PLAN - B、PAGE - B、改良PAGE - B和CU - HCC)相比,PLAN - B - DF显示出明显更好的区分功能(c指数,0.89对0.65 - 0.78;所有p <0.001),并保持良好的校准功能(Hosmer - Lemeshow检验p = 0.42)。根据PLAN - B - DF计算的风险概率将患者分为四组时,极低、低、中、高风险组的10年累积HCC发病率分别为0.0%、0.4%、16.0%和46.2%。

结论

与之前的模型相比,这种整合基于深度学习的CT图像自动分割的AI预测模型在预测CHB患者的HCC风险方面表现更优。

影响与意义

采用自动计算机断层扫描分割算法的新型预测模型PLAN - B - DF显著提高了慢性乙型肝炎(CHB)患者肝细胞癌的预测准确性和风险分层。使用梯度提升算法和计算机断层扫描指标,如内脏脂肪体积和肌脂肪变性,PLAN - B - DF优于仅基于临床和人口统计学数据的先前模型。该模型不仅与先前模型相比具有更高的c指数,还能有效地将CHB患者分为不同的风险组。此模型利用机器学习分析导致肝细胞癌发生的各种风险因素之间的复杂关系,从而能够对CHB患者进行更个性化的监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验