Zhang Oumeng, Lew Matthew D
Preston M. Green Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA.
Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA.
Q Rev Biophys. 2024 Dec 23;57:e17. doi: 10.1017/S0033583524000167.
Single-molecule orientation-localization microscopy (SMOLM) builds upon super-resolved localization microscopy by imaging orientations and rotational dynamics of individual molecules in addition to their positions. This added dimensionality provides unparalleled insights into nanoscale biophysical and biochemical processes, including the organization of actin networks, movement of molecular motors, conformations of DNA strands, growth and remodeling of amyloid aggregates, and composition changes within lipid membranes. In this review, we discuss recent innovations in SMOLM and cover three key aspects: (1) biophysical insights enabled by labeling strategies that endow fluorescent probes to bind to targets with orientation specificity; (2) advanced imaging techniques that leverage the physics of light-matter interactions and estimation theory to encode orientation information with high fidelity into microscope images; and (3) computational methods that ensure accurate and precise data analysis and interpretation, even in the presence of severe shot noise. Additionally, we compare labeling approaches, imaging hardware, and publicly available analysis software to aid the community in choosing the best SMOLM implementation for their specific biophysical application. Finally, we highlight future directions for SMOLM, such as the development of probes with improved photostability and specificity, the design of “smart” adaptive hardware, and the use of advanced computational approaches to handle large, complex datasets. This review underscores the significant current and potential impact of SMOLM in deepening our understanding of molecular dynamics, paving the way for future breakthroughs in the fields of biophysics, biochemistry, and materials science.
单分子取向定位显微镜(SMOLM)是在超分辨定位显微镜的基础上发展而来的,它除了能够成像单个分子的位置外,还能成像其取向和旋转动力学。这种增加的维度为纳米级生物物理和生化过程提供了无与伦比的见解,包括肌动蛋白网络的组织、分子马达的运动、DNA链的构象、淀粉样聚集体的生长和重塑以及脂质膜内的成分变化。在这篇综述中,我们讨论了SMOLM的最新创新,并涵盖三个关键方面:(1)通过标记策略实现的生物物理见解,这些策略使荧光探针能够以取向特异性结合靶标;(2)先进的成像技术,这些技术利用光与物质相互作用的物理原理和估计理论,将取向信息高保真地编码到显微镜图像中;(3)即使在存在严重散粒噪声的情况下,也能确保准确精确的数据分析和解释的计算方法。此外,我们比较了标记方法、成像硬件和公开可用的分析软件,以帮助该领域的研究人员为其特定的生物物理应用选择最佳的SMOLM实施方案。最后,我们强调了SMOLM的未来发展方向,例如开发具有更高光稳定性和特异性的探针、设计“智能”自适应硬件以及使用先进的计算方法来处理大型复杂数据集。这篇综述强调了SMOLM目前在深化我们对分子动力学的理解方面的重大影响及其潜力,为生物物理学、生物化学和材料科学领域的未来突破铺平了道路。