Suppr超能文献

DNA作为量子发射器的捕获者和引导者。

DNA as grabbers and steerers of quantum emitters.

作者信息

Cho YongDeok, Park Sung Hun, Huh Ji-Hyeok, Gopinath Ashwin, Lee Seungwoo

机构信息

KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Nanophotonics. 2022 Nov 14;12(3):399-412. doi: 10.1515/nanoph-2022-0602. eCollection 2023 Feb.

Abstract

The chemically synthesizable quantum emitters such as quantum dots (QDs), fluorescent nanodiamonds (FNDs), and organic fluorescent dyes can be integrated with an easy-to-craft quantum nanophotonic device, which would be readily developed by non-lithographic solution process. As a representative example, the solution dipping or casting of such soft quantum emitters on a flat metal layer and subsequent drop-casting of plasmonic nanoparticles can afford the quantum emitter-coupled plasmonic nanocavity (referred to as a nanoparticle-on-mirror (NPoM) cavity), allowing us for exploiting various quantum mechanical behaviors of light-matter interactions such as quantum electrodynamics (QED), strong coupling (e.g., Rabi splitting), and quantum mirage. This versatile, yet effective soft quantum nanophotonics would be further benefitted from a deterministic control over the positions and orientations of each individual quantum emitter, particularly at the molecule level of resolution. In this review, we will argue that DNA nanotechnology can provide a gold vista toward this end. A collective set of exotic characteristics of DNA molecules, including Watson-Crick complementarity and helical morphology, enables reliable grabbing of quantum emitters at the on-demand position and steering of their directors at the single molecular level. More critically, the recent advances in large-scale integration of DNA origami have pushed the reliance on the distinctly well-formed single device to the regime of the ultra-scale device arrays, which is critical for promoting the practically immediate applications of such soft quantum nanophotonics.

摘要

诸如量子点(QDs)、荧光纳米金刚石(FNDs)和有机荧光染料等可化学合成的量子发射器,能够与易于制作的量子纳米光子器件集成,该器件可通过非光刻溶液工艺轻松开发。作为一个典型例子,将此类软量子发射器溶液浸渍或浇铸在平坦金属层上,随后滴铸等离子体纳米颗粒,可得到量子发射器耦合等离子体纳米腔(称为镜上纳米颗粒(NPoM)腔),这使我们能够利用光与物质相互作用的各种量子力学行为,如量子电动力学(QED)、强耦合(例如拉比分裂)和量子幻影。这种通用且有效的软量子纳米光子学将进一步受益于对每个量子发射器的位置和取向的确定性控制,特别是在分子分辨率水平上。在本综述中,我们将论证DNA纳米技术可以为此提供一条黄金途径。DNA分子的一系列独特特性,包括沃森 - 克里克互补性和螺旋形态,能够在按需位置可靠地捕获量子发射器,并在单分子水平上控制其方向。更关键的是,DNA折纸大规模集成的最新进展已将对明显成型的单个器件的依赖推向了超大规模器件阵列领域,这对于推动此类软量子纳米光子学的实际即时应用至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86e6/11501876/53e7317ac1ce/j_nanoph-2022-0602_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验