Suppr超能文献

SUPERMAGO:基于Transformer嵌入的蛋白质功能预测

SUPERMAGO: Protein Function Prediction Based on Transformer Embeddings.

作者信息

de Oliveira Gabriel Bianchin, Pedrini Helio, Dias Zanoni

机构信息

Institute of Computing, University of Campinas, Campinas, Brazil.

出版信息

Proteins. 2025 May;93(5):981-996. doi: 10.1002/prot.26782. Epub 2024 Dec 22.

Abstract

Recent technological advancements have enabled the experimental determination of amino acid sequences for numerous proteins. However, analyzing protein functions, which is essential for understanding their roles within cells, remains a challenging task due to the associated costs and time constraints. To address this challenge, various computational approaches have been proposed to aid in the categorization of protein functions, mainly utilizing amino acid sequences. In this study, we introduce SUPERMAGO, a method that leverages amino acid sequences to predict protein functions. Our approach employs Transformer architectures, pre-trained on protein data, to extract features from the sequences. We use multilayer perceptrons for classification and a stacking neural network to aggregate the predictions, which significantly enhances the performance of our method. We also present SUPERMAGO+, an ensemble of SUPERMAGO and DIAMOND, based on neural networks that assign different weights to each term, offering a novel weighting mechanism compared with existing methods in the literature. Additionally, we introduce SUPERMAGO+Web, a web server-compatible version of SUPERMAGO+ designed to operate with reduced computational resources. Both SUPERMAGO and SUPERMAGO+ consistently outperformed state-of-the-art approaches in our evaluations, establishing them as leading methods for this task when considering only amino acid sequence information.

摘要

最近的技术进步使得对众多蛋白质的氨基酸序列进行实验测定成为可能。然而,分析蛋白质功能对于理解它们在细胞中的作用至关重要,但由于相关成本和时间限制,这仍然是一项具有挑战性的任务。为应对这一挑战,人们提出了各种计算方法来辅助蛋白质功能的分类,主要利用氨基酸序列。在本研究中,我们介绍了SUPERMAGO,一种利用氨基酸序列预测蛋白质功能的方法。我们的方法采用在蛋白质数据上预训练的Transformer架构,从序列中提取特征。我们使用多层感知器进行分类,并使用堆叠神经网络聚合预测结果,这显著提高了我们方法的性能。我们还展示了SUPERMAGO+,它是SUPERMAGO和DIAMOND的集成,基于对每个术语赋予不同权重的神经网络,与文献中的现有方法相比提供了一种新颖的加权机制。此外,我们推出了SUPERMAGO+Web,这是一个与网络服务器兼容的SUPERMAGO+版本,旨在以减少的计算资源运行。在我们的评估中,SUPERMAGO和SUPERMAGO+均始终优于现有最先进的方法,在仅考虑氨基酸序列信息时,将它们确立为这项任务的领先方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验