Li Hai, Cao Jie, Wan Rongtai, Feig Vivian Rachel, Tringides Christina M, Xu Jingkun, Yuk Hyunwoo, Lu Baoyang
Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, P. R. China.
Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
Adv Mater. 2025 Feb;37(7):e2415151. doi: 10.1002/adma.202415151. Epub 2024 Dec 23.
Conductive hydrogels combine the benefits of soft hydrogels with electrical conductivity and have gained significant attention over the past decade. These innovative materials, including poly(3,4-ethylenedioxythiophene) (PEDOTs)-based conductive hydrogels (P-CHs), are promising for flexible electronics and biological applications due to their tunable flexibility, biocompatibility, and hydrophilicity. Despite the recent advances, the intrinsic correlation between the design, fabrications, and applications of P-CHs has been mostly based on trial-and-error-based Edisonian approaches, significantly limiting their further development. This review comprehensively examines the design strategies, fabrication technologies, and diverse applications of P-CHs. By summarizing design strategies, such as molecular, network, phase, and structural engineering, and exploring both 2D and 3D fabrication techniques, this review offers a comprehensive overview of P-CHs applications in diverse fields including bioelectronics, soft actuators, energy devices, and solar evaporators. Establishing this critical internal connection between design, fabrication, and application aims to guide future research and stimulate innovation in the field of functional P-CHs, offering broad benefits to multidisciplinary researchers.
导电水凝胶结合了柔软水凝胶的优点与导电性,在过去十年中受到了广泛关注。这些创新材料,包括基于聚(3,4-乙撑二氧噻吩)(PEDOTs)的导电水凝胶(P-CHs),因其可调节的柔韧性、生物相容性和亲水性,在柔性电子和生物应用方面具有广阔前景。尽管最近取得了进展,但P-CHs的设计、制备和应用之间的内在关联大多基于基于反复试验的爱迪生式方法,这严重限制了它们的进一步发展。本综述全面考察了P-CHs的设计策略、制备技术和多样的应用。通过总结分子、网络、相和结构工程等设计策略,并探索二维和三维制备技术,本综述全面概述了P-CHs在生物电子学、软致动器、能量装置和太阳能蒸发器等不同领域的应用。在设计、制备和应用之间建立这种关键的内在联系,旨在指导未来的研究,并激发功能性P-CHs领域的创新,为多学科研究人员带来广泛益处。
ACS Appl Mater Interfaces. 2021-6-2
Acc Chem Res. 2019-9-19
Micromachines (Basel). 2023-5-6
Polymers (Basel). 2024-7-26
Int J Biol Macromol. 2024-11
Polymers (Basel). 2024-7-16
Nat Commun. 2020-3-30
Biomimetics (Basel). 2025-8-13
Natl Sci Rev. 2025-4-4
Polymers (Basel). 2025-4-27
Adv Sci (Weinh). 2025-5
Molecules. 2025-1-4