Kim Hyejun, Lee Hyojoo, Kwon Gyeong Hyeon, Kim Jiyun, Jeong Daeboem, Jung Hun-Gi, Bae Jong-Seong, Shin Daiha, Cho Jiung, Kim Jung Ho, Kim Hyun-Seung, Mun Junyoung, Kwon Ohmin
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 2066, Republic of Korea.
Energy Storage Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
Small. 2025 Feb;21(5):e2409523. doi: 10.1002/smll.202409523. Epub 2024 Dec 23.
The demand for all-solid-state batteries (ASSBs) featuring credible LiPSCl argyrodite (LPSCl) electrolytes is increasing, driving interest in exploring suitable current collectors for ASSBs. Copper (Cu), used as a current collector in traditional lithium-ion batteries, exhibits significant instability in LPSCl-ASSBs. In this study, the effectiveness of iron (Fe) is systematically investigated as an alternative current collector in LPSCl-ASSBs and compare its performance to that of Cu. Electrochemical analyses reveal that Cu undergoes unfavorable side reactions with LPSCl, forming copper sulfides and leading to pitting corrosion. In contrast, Fe, with its thick native oxide layer, effectively mitigates sulfide sub-reactions, enhancing the stability of the current collector-LPSCl electrolyte interface. Density function theory calculations and thermal tools using XRD and linear thermammetry confirm the higher stability of Fe with LPSCl compared to Cu. Replacing the Cu current collector with Fe significantly improves the long-term stability of graphite-based negative electrodes in ASSBs, achieving exceptional long cycleability exceeding 1000 cycles. These findings identify Fe as a promising current collector for ASSBs and provide valuable insights into the metal-electrolyte interactions that govern the performance of these advanced battery systems.
对具有可靠的锂硫磷氯银锗矿(LPSCl)电解质的全固态电池(ASSB)的需求不断增加,这激发了人们探索适合ASSB的集流体的兴趣。在传统锂离子电池中用作集流体的铜(Cu)在LPSCl-ASSB中表现出明显的不稳定性。在本研究中,系统地研究了铁(Fe)作为LPSCl-ASSB中替代集流体的有效性,并将其性能与Cu进行比较。电化学分析表明,Cu与LPSCl发生不利的副反应,形成硫化铜并导致点蚀。相比之下,Fe具有厚厚的天然氧化层,有效地减轻了硫化物副反应,增强了集流体-LPSCl电解质界面的稳定性。密度泛函理论计算以及使用XRD和线性热分析的热学工具证实,与Cu相比,Fe与LPSCl具有更高的稳定性。用Fe替代Cu集流体可显著提高ASSB中石墨基负极的长期稳定性,实现超过1000次循环的出色长循环性能。这些发现确定Fe是ASSB中有前景的集流体,并为控制这些先进电池系统性能的金属-电解质相互作用提供了有价值的见解。