Wang Yixian, Raj Vikalp, Naik Kaustubh G, Vishnugopi Bairav S, Cho Jaeyoung, Nguyen Mai, Recker Elizabeth A, Su Yufeng, Celio Hugo, Dolocan Andrei, Page Zachariah A, Watt John, Henkelman Graeme, Tu Qingsong Howard, Mukherjee Partha P, Mitlin David
Materials Science and Engineering Program, Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.
School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Adv Mater. 2025 Mar;37(11):e2410948. doi: 10.1002/adma.202410948. Epub 2025 Jan 6.
Anode-free all solid-state batteries (AF-ASSBs) employ "empty" current collector with three active interfaces that determine electrochemical stability; lithium metal - Solid electrolyte (SE) interphase (SEI-1), lithium - current collector interface, and collector - SE interphase (SEI-2). Argyrodite LiPSCl (LPSCl) solid electrolyte (SE) displays SEI-2 containing copper sulfides, formed even at open circuit. Bilayer of 140 nm magnesium/30 nm tungsten (Mg/W-Cu) controls the three interfaces and allows for state-of-the-art electrochemical performance in half-cells and fullcells. AF-ASSB with NMC811 cathode achieves 150 cycles with Coulombic efficiency (CE) above 99.8%. With high mass-loading cathode (8.6 mAh cm), AF-ASSB retains 86.5% capacity after 45 cycles at 0.2C. During electrodeposition of Li, gradient Li-Mg solid solution is formed, which reverses upon electrodissolution. This promotes conformal wetting/dewetting by Li and stabilizes SEI-1 by lowering thermodynamic driving force for SE reduction. Inert refractory W underlayer is required to prevent ongoing formation of SEI-2 that also drives electrochemical degradation. Inert Mo and Nb layers likewise protect Cu from corroding, while Li-alloying layers (Mg, Sn) are less effective due to ongoing volume changes and associated pulverization. Mechanistic explanation for observed Li segregation within alloying LiMg layer is provided through mesoscale modelling, considering opposing roles of diffusivity differences and interfacial stresses.
无阳极全固态电池(AF-ASSB)采用具有三个活性界面的“空”集流体,这三个界面决定了电化学稳定性;锂金属-固体电解质(SE)界面(SEI-1)、锂-集流体界面和集流体-SE界面(SEI-2)。硫代磷酰锂(LPSCl)固体电解质(SE)即使在开路时也会形成含硫化铜的SEI-2。140纳米镁/30纳米钨(Mg/W-Cu)双层控制这三个界面,并在半电池和全电池中实现了先进的电化学性能。采用NMC811阴极的AF-ASSB在库仑效率(CE)高于99.8%的情况下实现了150次循环。对于高质量负载阴极(8.6 mAh cm),AF-ASSB在0.2C下循环45次后仍保留86.5%的容量。在锂的电沉积过程中,形成了梯度锂-镁固溶体,在电溶解时会发生逆转。这促进了锂的保形润湿/去湿,并通过降低SE还原的热力学驱动力来稳定SEI-1。需要惰性耐火钨底层来防止持续形成也会驱动电化学降解的SEI-2。惰性钼和铌层同样可以保护铜不被腐蚀,而锂合金层(镁、锡)由于持续的体积变化和相关的粉碎而效果较差。通过中尺度建模,考虑扩散率差异和界面应力的相反作用,对在合金化锂镁层中观察到的锂偏析现象提供了机理解释。