Suppr超能文献

探索骨肉瘤细胞特征和代谢状态的异质性及其与临床预后的关联。

Exploring the heterogeneity of osteosarcoma cell characteristics and metabolic states and their association with clinical prognosis.

作者信息

Qin Sen, Hu YaoFeng, Deng RuCui, Wang Zhe

机构信息

Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China.

Department of Neurological Care Unit, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China.

出版信息

Front Immunol. 2024 Dec 6;15:1507476. doi: 10.3389/fimmu.2024.1507476. eCollection 2024.

Abstract

BACKGROUND

Osteosarcoma is a malignant tumor originating from mesenchymal bone tissue, characterized by high malignancy and poor prognosis. Despite progress in comprehensive treatment approaches, the five-year survival rate remains largely unchanged, highlighting the need to clarify its underlying mechanisms and discover new therapeutic targets.

METHODS

This study utilized RNA sequencing data from multiple public databases, encompassing osteosarcoma samples and healthy controls, along with single-cell RNA sequencing data. Various methods were utilized, such as differential expression analysis of genes, analysis of metabolic pathways, and weighted gene co-expression network analysis (WGCNA), to pinpoint crucial genes. Using this list of genes, we developed and validated a prognostic model that incorporated risk signatures, and we evaluated the effectiveness of the model through survival analysis, immune cell infiltration examination, and drug sensitivity evaluation.

RESULTS

We analyzed gene expression and metabolic pathways in nine samples using single-cell sequencing data. Initially, we performed quality control and clustering, identifying 21 statistically significant cell subpopulations. Metabolic analyses of these subpopulations revealed heterogeneous activation of metabolic pathways. Focusing on the osteoblastic cell subpopulation, we further subdivided it into six groups and examined their gene expression and differentiation capabilities. Differential expression and enrichment analyses indicated that tumor tissues were enriched in cytoskeletal and structural pathways. Through WGCNA, we identified core genes negatively correlated with four highly activated metabolic pathways. Using osteosarcoma patient data, we developed a risk signature model that demonstrated robust prognostic predictions across three independent cohorts. Ultimately, we performed a thorough examination of the model, which encompassed clinical and pathological characteristics, enrichment analysis, pathways associated with cancer markers, and scores of immune infiltration, highlighting notable and complex disparities between high-risk and low-risk populations.

CONCLUSION

This research clarifies the molecular mechanisms and metabolic features associated with osteosarcoma and how they relate to patient outcomes, offering novel perspectives and approaches for targeted therapy and prognostic assessment in osteosarcoma.

摘要

背景

骨肉瘤是一种起源于间充质骨组织的恶性肿瘤,具有高恶性和预后差的特点。尽管综合治疗方法取得了进展,但五年生存率基本保持不变,这凸显了阐明其潜在机制和发现新治疗靶点的必要性。

方法

本研究利用来自多个公共数据库的RNA测序数据,包括骨肉瘤样本和健康对照,以及单细胞RNA测序数据。采用了多种方法,如基因差异表达分析、代谢途径分析和加权基因共表达网络分析(WGCNA),以确定关键基因。利用这些基因列表,我们开发并验证了一个包含风险特征的预后模型,并通过生存分析、免疫细胞浸润检查和药物敏感性评估来评估该模型的有效性。

结果

我们使用单细胞测序数据分析了九个样本中的基因表达和代谢途径。首先,我们进行了质量控制和聚类,确定了21个具有统计学意义的细胞亚群。对这些亚群的代谢分析揭示了代谢途径的异质性激活。聚焦于成骨细胞亚群,我们进一步将其细分为六组,并检查了它们的基因表达和分化能力。差异表达和富集分析表明,肿瘤组织在细胞骨架和结构途径中富集。通过WGCNA,我们确定了与四个高度激活的代谢途径呈负相关的核心基因。利用骨肉瘤患者数据,我们开发了一个风险特征模型,该模型在三个独立队列中都显示出强大的预后预测能力。最终,我们对该模型进行了全面检查,包括临床和病理特征、富集分析、与癌症标志物相关的途径以及免疫浸润评分,突出了高危和低危人群之间显著而复杂的差异。

结论

本研究阐明了与骨肉瘤相关的分子机制和代谢特征以及它们与患者预后的关系,为骨肉瘤的靶向治疗和预后评估提供了新的视角和方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/debe/11659294/001907ed5b6d/fimmu-15-1507476-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验